|
--- |
|
language: tr |
|
tags: |
|
- bert |
|
- turkish |
|
- text-classification |
|
- offensive-language-detection |
|
license: mit |
|
datasets: |
|
- offenseval2020_tr |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
--- |
|
|
|
Offensive Language Detection For Turkish Language |
|
|
|
## Model Description |
|
This model has been fine-tuned using [dbmdz/bert-base-turkish-128k-uncased](https://huggingface.co/dbmdz/bert-base-turkish-128k-uncased) model with the [OffensEval 2020](https://huggingface.co/datasets/offenseval2020_tr) dataset. |
|
The offenseval-tr dataset contains 31,756 annotated tweets. |
|
|
|
## Dataset Distribution |
|
|
|
| | Non Offensive(0) | Offensive (1)| |
|
|-----------|------------------|--------------| |
|
| Train | 25625 | 6131 | |
|
| Test | 2812 | 716 | |
|
|
|
|
|
## Preprocessing Steps |
|
|
|
| Process | Description | |
|
|--------------------------------------------------|---------------------------------------------------| |
|
| Accented character transformation | Converting accented characters to their unaccented equivalents | |
|
| Lowercase transformation | Converting all text to lowercase | |
|
| Removing @user mentions | Removing @user formatted user mentions from text | |
|
| Removing hashtag expressions | Removing #hashtag formatted expressions from text | |
|
| Removing URLs | Removing URLs from text | |
|
| Removing punctuation and punctuated emojis | Removing punctuation marks and emojis presented with punctuation from text | |
|
| Removing emojis | Removing emojis from text | |
|
| Deasciification | Converting ASCII text into text containing Turkish characters | |
|
|
|
|
|
The performance of each pre-process was analyzed. |
|
Removing digits and keeping hashtags had no effect. |
|
|
|
|
|
## Usage |
|
|
|
Install necessary libraries: |
|
|
|
```pip install git+https://github.com/emres/turkish-deasciifier.git``` |
|
|
|
```pip install keras_preprocessing``` |
|
|
|
|
|
Pre-processing functions are below: |
|
|
|
```python |
|
|
|
from turkish.deasciifier import Deasciifier |
|
def deasciifier(text): |
|
deasciifier = Deasciifier(text) |
|
return deasciifier.convert_to_turkish() |
|
|
|
def remove_circumflex(text): |
|
circumflex_map = { |
|
'â': 'a', |
|
'î': 'i', |
|
'û': 'u', |
|
'ô': 'o', |
|
'Â': 'A', |
|
'Î': 'I', |
|
'Û': 'U', |
|
'Ô': 'O' |
|
} |
|
|
|
return ''.join(circumflex_map.get(c, c) for c in text) |
|
def turkish_lower(text): |
|
turkish_map = { |
|
'I': 'ı', |
|
'İ': 'i', |
|
'Ç': 'ç', |
|
'Ş': 'ş', |
|
'Ğ': 'ğ', |
|
'Ü': 'ü', |
|
'Ö': 'ö' |
|
} |
|
return ''.join(turkish_map.get(c, c).lower() for c in text) |
|
``` |
|
|
|
Clean text using below function: |
|
|
|
```python |
|
import re |
|
|
|
def clean_text(text): |
|
# Metindeki şapkalı harfleri kaldırma |
|
text = remove_circumflex(text) |
|
# Metni küçük harfe dönüştürme |
|
text = turkish_lower(text) |
|
# deasciifier |
|
text = deasciifier(text) |
|
# Kullanıcı adlarını kaldırma |
|
text = re.sub(r"@\S*", " ", text) |
|
# Hashtag'leri kaldırma |
|
text = re.sub(r'#\S+', ' ', text) |
|
# URL'leri kaldırma |
|
text = re.sub(r"http\S+|www\S+|https\S+", ' ', text, flags=re.MULTILINE) |
|
# Noktalama işaretlerini ve metin tabanlı emojileri kaldırma |
|
text = re.sub(r'[^\w\s]|(:\)|:\(|:D|:P|:o|:O|;\))', ' ', text) |
|
# Emojileri kaldırma |
|
emoji_pattern = re.compile("[" |
|
u"\U0001F600-\U0001F64F" # emoticons |
|
u"\U0001F300-\U0001F5FF" # symbols & pictographs |
|
u"\U0001F680-\U0001F6FF" # transport & map symbols |
|
u"\U0001F1E0-\U0001F1FF" # flags (iOS) |
|
u"\U00002702-\U000027B0" |
|
u"\U000024C2-\U0001F251" |
|
"]+", flags=re.UNICODE) |
|
text = emoji_pattern.sub(r' ', text) |
|
|
|
# Birden fazla boşluğu tek boşlukla değiştirme |
|
text = re.sub(r'\s+', ' ', text).strip() |
|
return example |
|
``` |
|
|
|
## Model Initialization |
|
|
|
```python |
|
# Load model directly |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("TURKCELL/bert-offensive-lang-detection-tr") |
|
model = AutoModelForSequenceClassification.from_pretrained("TURKCELL/bert-offensive-lang-detection-tr") |
|
|
|
``` |
|
Check if sentence is offensive like below: |
|
|
|
```python |
|
import numpy as np |
|
def is_offensive(sentence): |
|
d = { |
|
0: 'non-offensive', |
|
1: 'offensive' |
|
} |
|
normalize_text = clean_text(sentence) |
|
test_sample = tokenizer([normalize_text], padding=True, truncation=True, max_length=256, return_tensors='pt') |
|
|
|
test_sample = {k: v.to(device) for k, v in test_sample.items()} |
|
|
|
output = model(**test_sample) |
|
y_pred = np.argmax(output.logits.detach().cpu().numpy(), axis=1) |
|
|
|
print(normalize_text, "-->", d[y_pred[0]]) |
|
return y_pred[0] |
|
|
|
``` |
|
|
|
```python |
|
is_offensive("@USER Mekanı cennet olsun, saygılar sayın avukatımız,iyi günler dilerim") |
|
is_offensive("Bir Gün Gelecek Biriniz Bile Kalmayana Kadar Mücadeleye Devam Kökünüzü Kurutacağız !! #bebekkatilipkk") |
|
``` |
|
|
|
## Evaluation |
|
|
|
Evaluation results on test set shown on table below. |
|
We achive %89 accuracy on test set. |
|
## Model Performance Metrics |
|
|
|
| Class | Precision | Recall | F1-score | Accuracy | |
|
|---------|-----------|--------|----------|----------| |
|
| Class 0 | 0.92 | 0.94 | 0.93 | 0.89 | |
|
| Class 1 | 0.73 | 0.67 | 0.70 | | |
|
| Macro | 0.83 | 0.80 | 0.81 | | |