🇹🇷 RoBERTaTurkish
Model description
This is a Turkish RoBERTa base model pretrained on Turkish Wikipedia, Turkish OSCAR, and some news websites.
The final training corpus has a size of 38 GB and 329.720.508 sentences.
As Turkcell, we trained the model on an Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz with 256GB RAM and 2 x GV100GL [Tesla V100 PCIe 32GB] GPU for 2.5M steps.
Usage
Load transformers library with:
from transformers import AutoTokenizer, AutoModelForMaskedLM
tokenizer = AutoTokenizer.from_pretrained("TURKCELL/roberta-base-turkish-uncased")
model = AutoModelForMaskedLM.from_pretrained("TURKCELL/roberta-base-turkish-uncased")
Fill Mask Usage
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="TURKCELL/roberta-base-turkish-uncased",
tokenizer="TURKCELL/roberta-base-turkish-uncased"
)
fill_mask("iki ülke arasında <mask> başladı")
[{'sequence': 'iki ülke arasında savaş başladı',
'score': 0.3013845384120941,
'token': 1359,
'token_str': ' savaş'},
{'sequence': 'iki ülke arasında müzakereler başladı',
'score': 0.1058429479598999,
'token': 30439,
'token_str': ' müzakereler'},
{'sequence': 'iki ülke arasında görüşmeler başladı',
'score': 0.07718811184167862,
'token': 4916,
'token_str': ' görüşmeler'},
{'sequence': 'iki ülke arasında kriz başladı',
'score': 0.07174749672412872,
'token': 3908,
'token_str': ' kriz'},
{'sequence': 'iki ülke arasında çatışmalar başladı',
'score': 0.05678590387105942,
'token': 19346,
'token_str': ' çatışmalar'}]
- Downloads last month
- 183
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.