GPT2 Model for German Language

Model Name: Tanhim/gpt2-model-de
language: German or Deutsch
thumbnail: https://huggingface.co/Tanhim/gpt2-model-de
datasets: Ten Thousand German News Articles Dataset

How to use

You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, I set a seed for reproducibility:

>>> from transformers import pipeline, set_seed
>>> generation= pipeline('text-generation', model='Tanhim/gpt2-model-de', tokenizer='Tanhim/gpt2-model-de')
>>> set_seed(42)
>>> generation("Hallo, ich bin ein Sprachmodell,", max_length=30, num_return_sequences=5)

Here is how to use this model to get the features of a given text in PyTorch:

from transformers import AutoTokenizer, AutoModelWithLMHead 
tokenizer = AutoTokenizer.from_pretrained("Tanhim/gpt2-model-de") 
model = AutoModelWithLMHead.from_pretrained("Tanhim/gpt2-model-de") 
text = "Ersetzen Sie mich durch einen beliebigen Text, den Sie wünschen."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

Citation request: If you use the model of this repository in your research, please consider citing the following way:

@misc{GermanTransformer,
  author = {Tanhim Islam},
  title = {{PyTorch Based Transformer Machine Learning Model for German Text Generation Task}},
  howpublished = "\url{https://huggingface.co/Tanhim/gpt2-model-de}",
  year = {2021}, 
  note = "[Online; accessed 17-June-2021]"
}
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.