File size: 27,210 Bytes
d5c2f29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
---
base_model: Snowflake/snowflake-arctic-embed-m
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1539
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: How do the models ensure the production of valid, reliable, and
factually accurate outputs while assessing risks associated with content provenance
and offensive cyber activities?
sentences:
- "Information or Capabilities \nMS-1.1-0 05 Evaluate novel methods and technologies\
\ for the measurement of GAI-related \nrisks in cluding in content provenance\
\ , offensive cy ber, and CBRN , while \nmaintaining the models’ ability to produce\
\ valid, reliable, and factually accurate outputs. Information Integrity ; CBRN\
\ \nInformation or Capabilities ; \nObscene, Degrading, and/or Abusive Content"
- Testing. Systems should undergo extensive testing before deployment. This testing
should follow domain-specific best practices, when available, for ensuring the
technology will work in its real-world context. Such testing should take into
account both the specific technology used and the roles of any human operators
or reviewers who impact system outcomes or effectiveness; testing should include
both automated systems testing and human-led (manual) testing. Testing conditions
should mirror as
- "oping technologies related to a sensitive domain and those collecting, using,\
\ storing, or sharing sensitive data \nshould, whenever appropriate, regularly\
\ provide public reports describing: any data security lapses or breaches \nthat\
\ resulted in sensitive data leaks; the numbe r, type, and outcomes of ethical\
\ pre-reviews undertaken; a \ndescription of any data sold, shared, or made public,\
\ and how that data was assessed to determine it did not pres-"
- source_sentence: How should automated systems handle user data in terms of collection
and user consent according to the provided context?
sentences:
- 'Property Appraisal and Valuation Equity: Closing the Racial Wealth Gap by Addressing
Mis-valuations for
Families and Communities of Color. March 2022. https://pave.hud.gov/sites/pave.hud.gov/files/
documents/PAVEActionPlan.pdf
53. U.S. Equal Employment Opportunity Commission. The Americans with Disabilities
Act and the Use of
Software, Algorithms, and Artificial Intelligence to Assess Job Applicants and
Employees . EEOC-'
- "defense, substantive or procedural, enforceable at law or in equity by any party\
\ against the United States, its \ndepartments, agencies, or entities, its officers,\
\ employees, or agents, or any other person, nor does it constitute a \nwaiver\
\ of sovereign immunity. \nCopyright Information \nThis document is a work of\
\ the United States Government and is in the public domain (see 17 U.S.C. §105).\
\ \n2"
- "privacy through design choices that ensure such protections are included by default,\
\ including ensuring that data collection conforms to reasonable expectations\
\ and that only data strictly necessary for the specific context is collected.\
\ Designers, developers, and deployers of automated systems should seek your permission\
\ \nand respect your decisions regarding collection, use, access, transfer, and\
\ deletion of your data in appropriate"
- source_sentence: How many participants attended the listening sessions organized
for members of the public?
sentences:
- "37 MS-2.11-0 05 Assess the proportion of synthetic to non -synthetic training\
\ data and verify \ntraining data is not overly homogenous or GAI-produced to\
\ mitigate concerns of \nmodel collapse. Harmful Bias and Homogenization \n\
AI Actor Tasks: AI Deployment, AI Impact Assessment, Affected Individuals and\
\ Communities, Domain Experts, End -Users, \nOperation and Monitoring, TEVV"
- "lenders who may be avoiding serving communities of color are conducting targeted\
\ marketing and advertising.51 \nThis initiative will draw upon strong partnerships\
\ across federal agencies, including the Consumer Financial \nProtection Bureau\
\ and prudential regulators. The Action Plan to Advance Property Appraisal and\
\ Valuation \nEquity includes a commitment from the agencies that oversee mortgage\
\ lending to include a"
- 'for members of the public. The listening sessions together drew upwards of 300
participants. The Science and
Technology Policy Institute produced a synopsis of both the RFI submissions and
the feedback at the listeningsessions.
115
61'
- source_sentence: Why is it particularly important to monitor the risks of confabulated
content when integrating Generative AI (GAI) into applications that involve consequential
decision making?
sentences:
- of how and what the technologies are doing. Some panelists suggested that technology
should be used to help people receive benefits, e.g., by pushing benefits to those
in need and ensuring automated decision-making systems are only used to provide
a positive outcome; technology shouldn't be used to take supports away from people
who need them.
- "many real -world applications, such as in healthcare, where a confabulated summary\
\ of patient \ninformation reports could cause doctors to make incorrect diagnoses\
\ and/or recommend the wrong \ntreatments. Risks of confabulated content may\
\ be especially important to monitor when integrating GAI \ninto applications\
\ involving consequential decision making. \nGAI outputs may also include confabulated\
\ logic or citations that purport to justify or explain the"
- "settings or in the public domain. \nOrganizations can restrict AI applications\
\ that cause harm, exceed stated risk tolerances, or that conflict with their tolerances\
\ or values. Governance tools and protocols that are applied to other types of\
\ AI systems can be applied to GAI systems. These p lans and actions include:\
\ \n• Accessibility and reasonable accommodations \n• AI actor credentials and\
\ qualifications \n• Alignment to organizational values • Auditing and assessment"
- source_sentence: How does the framework address the concerns related to the rapid
innovation and changing definitions of AI systems?
sentences:
- or inequality. Assessment could include both qualitative and quantitative evaluations
of the system. This equity assessment should also be considered a core part of
the goals of the consultation conducted as part of the safety and efficacy review.
- "deactivate AI systems that demonstrate performance or outcomes inconsistent with\
\ intended use. \nAction ID Suggested Action GAI Risks \nMG-2.4-001 Establish\
\ and maintain communication plans to inform AI stakeholders as part of \nthe\
\ deactivation or disengagement process of a specific GAI system (including for\
\ open -source models) or context of use, including r easons, workarounds, user\
\ \naccess removal, alternative processes, contact information, etc. Human -AI\
\ Configuration"
- "SECTION TITLE\nApplying The Blueprint for an AI Bill of Rights \nWhile many\
\ of the concerns addressed in this framework derive from the use of AI, the technical\
\ \ncapabilities and specific definitions of such systems change with the speed\
\ of innovation, and the potential \nharms of their use occur even with less technologically\
\ sophisticated tools. Thus, this framework uses a two-\npart test to determine\
\ what systems are in scope. This framework applies to (1) automated systems that\
\ (2)"
model-index:
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.9270833333333334
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9947916666666666
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 1.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1.0
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.9270833333333334
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.33159722222222227
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.9270833333333334
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9947916666666666
name: Cosine Recall@3
- type: cosine_recall@5
value: 1.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 1.0
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.969317939271961
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9587673611111113
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9587673611111112
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.9270833333333334
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9947916666666666
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 1.0
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1.0
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9270833333333334
name: Dot Precision@1
- type: dot_precision@3
value: 0.33159722222222227
name: Dot Precision@3
- type: dot_precision@5
value: 0.19999999999999998
name: Dot Precision@5
- type: dot_precision@10
value: 0.09999999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.9270833333333334
name: Dot Recall@1
- type: dot_recall@3
value: 0.9947916666666666
name: Dot Recall@3
- type: dot_recall@5
value: 1.0
name: Dot Recall@5
- type: dot_recall@10
value: 1.0
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.969317939271961
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9587673611111113
name: Dot Mrr@10
- type: dot_map@100
value: 0.9587673611111112
name: Dot Map@100
---
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Technocoloredgeek/midterm-finetuned-embedding")
# Run inference
sentences = [
'How does the framework address the concerns related to the rapid innovation and changing definitions of AI systems?',
'SECTION TITLE\nApplying The Blueprint for an AI Bill of Rights \nWhile many of the concerns addressed in this framework derive from the use of AI, the technical \ncapabilities and specific definitions of such systems change with the speed of innovation, and the potential \nharms of their use occur even with less technologically sophisticated tools. Thus, this framework uses a two-\npart test to determine what systems are in scope. This framework applies to (1) automated systems that (2)',
'or inequality. Assessment could include both qualitative and quantitative evaluations of the system. This equity assessment should also be considered a core part of the goals of the consultation conducted as part of the safety and efficacy review.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.9271 |
| cosine_accuracy@3 | 0.9948 |
| cosine_accuracy@5 | 1.0 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9271 |
| cosine_precision@3 | 0.3316 |
| cosine_precision@5 | 0.2 |
| cosine_precision@10 | 0.1 |
| cosine_recall@1 | 0.9271 |
| cosine_recall@3 | 0.9948 |
| cosine_recall@5 | 1.0 |
| cosine_recall@10 | 1.0 |
| cosine_ndcg@10 | 0.9693 |
| cosine_mrr@10 | 0.9588 |
| **cosine_map@100** | **0.9588** |
| dot_accuracy@1 | 0.9271 |
| dot_accuracy@3 | 0.9948 |
| dot_accuracy@5 | 1.0 |
| dot_accuracy@10 | 1.0 |
| dot_precision@1 | 0.9271 |
| dot_precision@3 | 0.3316 |
| dot_precision@5 | 0.2 |
| dot_precision@10 | 0.1 |
| dot_recall@1 | 0.9271 |
| dot_recall@3 | 0.9948 |
| dot_recall@5 | 1.0 |
| dot_recall@10 | 1.0 |
| dot_ndcg@10 | 0.9693 |
| dot_mrr@10 | 0.9588 |
| dot_map@100 | 0.9588 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,539 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 12 tokens</li><li>mean: 23.91 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 84.9 tokens</li><li>max: 335 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What are confabulations in the context of generative AI outputs, and how do they arise from the design of generative models?</code> | <code>Confabulations can occur across GAI outputs and contexts .9,10 Confabulations are a natural result of the <br>way generative models are designed : they generate outputs that approximate the statistical distribution <br>of their training data ; for example, LLMs predict the next token or word in a sentence or phrase . While <br>such statistical prediction can produce factual ly accurate and consistent outputs , it can also produce</code> |
| <code>What roles do Rashida Richardson and Karen Kornbluh hold in relation to technology and democracy as mentioned in the context?</code> | <code>products, advanced platforms and services, “Internet of Things” (IoT) devices, and smart city products and services. <br>Welcome :<br>•Rashida Richardson, Senior Policy Advisor for Data and Democracy, White House Office of Science andTechnology Policy<br>•Karen Kornbluh, Senior Fellow and Director of the Digital Innovation and Democracy Initiative, GermanMarshall Fund<br>Moderator :</code> |
| <code>What are some best practices that entities should follow to ensure privacy and security in automated systems?</code> | <code>Privacy-preserving security. Entities creating, using, or governing automated systems should follow privacy and security best practices designed to ensure data and metadata do not leak beyond the specific consented use case. Best practices could include using privacy-enhancing cryptography or other types of privacy-enhancing technologies or fine-grained permissions and access control mechanisms, along with conventional system security protocols. <br>33</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `num_train_epochs`: 5
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 20
- `per_device_eval_batch_size`: 20
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_map@100 |
|:------:|:----:|:--------------:|
| 0.6494 | 50 | 0.9436 |
| 1.0 | 77 | 0.9501 |
| 1.2987 | 100 | 0.9440 |
| 1.9481 | 150 | 0.9523 |
| 2.0 | 154 | 0.9488 |
| 2.5974 | 200 | 0.9549 |
| 3.0 | 231 | 0.9536 |
| 3.2468 | 250 | 0.9562 |
| 3.8961 | 300 | 0.9562 |
| 4.0 | 308 | 0.9562 |
| 4.5455 | 350 | 0.9562 |
| 5.0 | 385 | 0.9588 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |