BioMistral-Hermes-Slerp

BioMistral-Hermes-Slerp is a merge of the following models:

Evaluations

Benchmark BioMistral-Hermes-Slerp Orca-2-7b llama-2-7b meditron-7b meditron-70b
MedMCQA
ClosedPubMedQA
PubMedQA
MedQA
MedQA4
MedicationQA
MMLU Medical
MMLU
TruthfulQA
GSM8K
ARC
HellaSwag
Winogrande

More details on the Open LLM Leaderboard evaluation results can be found here.

🧩 Configuration

slices:
  - sources:
      - model: BioMistral/BioMistral-7B-DARE
        layer_range: [0, 32]
      - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
        layer_range: [0, 32]
merge_method: slerp
base_model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5 # fallback for rest of tensors
dtype: float16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Technoculture/BioMistral-Hermes-Slerp"
messages = [{"role": "user", "content": "I am feeling sleepy these days"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
70
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including Technoculture/BioMistral-Hermes-Slerp