Built with Axolotl

See axolotl config

axolotl version: 0.3.0

base_model: epfl-llm/meditron-7b
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: Open-Orca/SlimOrca-Dedup
    type: sharegpt
  - path: axiong/pmc_llama_instructions
    type: alpaca
  - path: xzuyn/chatdoctor-200k-stripped
    type: alpaca
  - path: technoculture/riddle_sense
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./qlora-out

adapter: qlora
lora_model_dir:

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true

lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: MD7b-alpha
wandb_entity: technoculture
wandb_watch: 
wandb_name: 
wandb_log_model: true

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler_type: cosine
lr_scheduler: cosine
learning_rate: 0.0003

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

do_eval: true
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 1

hub_model_id: technoculture/md7b-alpha
hub_strategy: every_save
push_to_hub: true

log_level: info
logging_steps: 1
logging_strategy: steps

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: false
local_rank:
xformers_attention:
flash_attention: true

warmup_steps: 2000
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

md7b-alpha

This model is a fine-tuned version of epfl-llm/meditron-7b on a set of datasets. It achieves the following results on the evaluation set:

  • Loss: 1.0238

Evaluation

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2000
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
2.1602 0.0 1 1.9066
1.1128 0.5 14744 1.1620
1.2463 1.0 29488 1.1288
0.8291 1.49 44232 1.1025
1.0524 1.99 58976 1.0771
1.0369 2.48 73720 1.0563
1.0402 2.98 88464 1.0299
0.943 3.47 103208 1.0271
1.0845 3.97 117952 1.0238

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: False
  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Technoculture/MT7Bi-alpha

Adapter
(10)
this model