satyamt commited on
Commit
62b9c9a
·
verified ·
1 Parent(s): a12492c

End of training

Browse files
Files changed (2) hide show
  1. README.md +154 -189
  2. adapter_model.bin +1 -1
README.md CHANGED
@@ -1,204 +1,169 @@
1
  ---
 
2
  library_name: peft
 
 
 
3
  base_model: epfl-llm/meditron-7b
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
 
 
201
 
 
 
 
 
202
  ## Training procedure
203
 
204
 
 
1
  ---
2
+ license: llama2
3
  library_name: peft
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
  base_model: epfl-llm/meditron-7b
8
+ model-index:
9
+ - name: md7b-alpha
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
 
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
 
19
+ axolotl version: `0.3.0`
20
+ ```yaml
21
+ base_model: epfl-llm/meditron-7b
22
+ model_type: LlamaForCausalLM
23
+ tokenizer_type: LlamaTokenizer
24
+ is_llama_derived_model: true
25
+
26
+ load_in_8bit: false
27
+ load_in_4bit: true
28
+ strict: false
29
+
30
+ datasets:
31
+ - path: Open-Orca/SlimOrca-Dedup
32
+ type: sharegpt
33
+ - path: axiong/pmc_llama_instructions
34
+ type: alpaca
35
+ - path: xzuyn/chatdoctor-200k-stripped
36
+ type: alpaca
37
+ - path: technoculture/riddle_sense
38
+ type: alpaca
39
+ dataset_prepared_path:
40
+ val_set_size: 0.05
41
+ output_dir: ./qlora-out
42
+
43
+ adapter: qlora
44
+ lora_model_dir:
45
+
46
+ sequence_len: 2048
47
+ sample_packing: true
48
+ pad_to_sequence_len: true
49
+
50
+ lora_r: 32
51
+ lora_alpha: 16
52
+ lora_dropout: 0.05
53
+ lora_target_modules:
54
+ lora_target_linear: true
55
+ lora_fan_in_fan_out:
56
+
57
+ wandb_project: MD7b-alpha
58
+ wandb_entity: technoculture
59
+ wandb_watch:
60
+ wandb_name:
61
+ wandb_log_model: true
62
+
63
+ gradient_accumulation_steps: 4
64
+ micro_batch_size: 2
65
+ num_epochs: 4
66
+ optimizer: paged_adamw_32bit
67
+ lr_scheduler_type: cosine
68
+ lr_scheduler: cosine
69
+ learning_rate: 0.0003
70
+
71
+ train_on_inputs: false
72
+ group_by_length: false
73
+ bf16: true
74
+ fp16: false
75
+ tf32: false
76
+
77
+ do_eval: true
78
+ evals_per_epoch: 2
79
+ eval_table_size:
80
+ saves_per_epoch: 1
81
+
82
+ hub_model_id: technoculture/md7b-alpha
83
+ hub_strategy: every_save
84
+ push_to_hub: true
85
+
86
+ log_level: info
87
+ logging_steps: 1
88
+ logging_strategy: steps
89
+
90
+ gradient_checkpointing: true
91
+ early_stopping_patience:
92
+ resume_from_checkpoint: false
93
+ local_rank:
94
+ xformers_attention:
95
+ flash_attention: true
96
+
97
+ warmup_steps: 2000
98
+ debug:
99
+ deepspeed:
100
+ weight_decay: 0.1
101
+ fsdp:
102
+ fsdp_config:
103
+ special_tokens:
104
+ bos_token: "<s>"
105
+ eos_token: "</s>"
106
+ unk_token: "<unk>"
107
+
108
+ ```
109
+
110
+ </details><br>
111
+
112
+ # md7b-alpha
113
+
114
+ This model is a fine-tuned version of [epfl-llm/meditron-7b](https://huggingface.co/epfl-llm/meditron-7b) on the None dataset.
115
+ It achieves the following results on the evaluation set:
116
+ - Loss: 1.0238
117
+
118
+ ## Model description
119
+
120
+ More information needed
121
+
122
+ ## Intended uses & limitations
123
+
124
+ More information needed
125
+
126
+ ## Training and evaluation data
127
+
128
+ More information needed
129
 
130
+ ## Training procedure
131
 
132
+ ### Training hyperparameters
133
+
134
+ The following hyperparameters were used during training:
135
+ - learning_rate: 0.0003
136
+ - train_batch_size: 2
137
+ - eval_batch_size: 2
138
+ - seed: 42
139
+ - gradient_accumulation_steps: 4
140
+ - total_train_batch_size: 8
141
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
142
+ - lr_scheduler_type: cosine
143
+ - lr_scheduler_warmup_steps: 2000
144
+ - num_epochs: 4
145
+
146
+ ### Training results
147
+
148
+ | Training Loss | Epoch | Step | Validation Loss |
149
+ |:-------------:|:-----:|:------:|:---------------:|
150
+ | 2.1602 | 0.0 | 1 | 1.9066 |
151
+ | 1.1128 | 0.5 | 14744 | 1.1620 |
152
+ | 1.2463 | 1.0 | 29488 | 1.1288 |
153
+ | 0.8291 | 1.49 | 44232 | 1.1025 |
154
+ | 1.0524 | 1.99 | 58976 | 1.0771 |
155
+ | 1.0369 | 2.48 | 73720 | 1.0563 |
156
+ | 1.0402 | 2.98 | 88464 | 1.0299 |
157
+ | 0.943 | 3.47 | 103208 | 1.0271 |
158
+ | 1.0845 | 3.97 | 117952 | 1.0238 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
 
 
160
 
161
+ ### Framework versions
162
 
163
+ - Transformers 4.37.0.dev0
164
+ - Pytorch 2.0.1+cu118
165
+ - Datasets 2.16.1
166
+ - Tokenizers 0.15.0
167
  ## Training procedure
168
 
169
 
adapter_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ff575cd856be4ab04c33f1859f65d41c3f021b07ae4df9f539b1e3b59b989da5
3
  size 319977229
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5cb1c7b8fceeadfdbe57b6e4c54768a0b9349dfdc1108358595d404b947d7d6
3
  size 319977229