metadata
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: cont-vvt-gs-rot-flip-wtoken-f198-4.4-h768-t8.16.16
results: []
cont-vvt-gs-rot-flip-wtoken-f198-4.4-h768-t8.16.16
This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6569
- Accuracy: 0.7407
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 5500
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.868 | 0.0402 | 221 | 0.7216 | 0.6931 |
0.715 | 1.0402 | 442 | 0.6954 | 0.7037 |
0.7041 | 2.0402 | 663 | 0.7269 | 0.7460 |
0.5228 | 3.0402 | 884 | 0.7158 | 0.7407 |
0.7336 | 4.0402 | 1105 | 0.6833 | 0.7196 |
0.5987 | 5.0402 | 1326 | 0.6155 | 0.7725 |
0.8574 | 6.0402 | 1547 | 0.6601 | 0.7302 |
0.6805 | 7.0402 | 1768 | 0.6374 | 0.7460 |
0.8086 | 8.0402 | 1989 | 0.6896 | 0.6984 |
0.6552 | 9.0402 | 2210 | 0.6535 | 0.7090 |
0.7846 | 10.0402 | 2431 | 0.6646 | 0.7354 |
0.6114 | 11.0402 | 2652 | 0.6111 | 0.7619 |
0.7435 | 12.0402 | 2873 | 0.6779 | 0.7354 |
0.7742 | 13.0402 | 3094 | 0.7390 | 0.6878 |
0.6558 | 14.0402 | 3315 | 0.6284 | 0.7354 |
0.4822 | 15.0402 | 3536 | 0.7071 | 0.7196 |
0.7686 | 16.0402 | 3757 | 0.6982 | 0.7302 |
0.7945 | 17.0402 | 3978 | 0.6336 | 0.7566 |
0.5755 | 18.0402 | 4199 | 0.5924 | 0.7460 |
0.6895 | 19.0402 | 4420 | 0.6227 | 0.7513 |
0.4775 | 20.0402 | 4641 | 0.5846 | 0.7672 |
0.8137 | 21.0402 | 4862 | 0.6724 | 0.7354 |
0.4226 | 22.0402 | 5083 | 0.6772 | 0.7460 |
0.6616 | 23.0402 | 5304 | 0.6856 | 0.7407 |
0.5246 | 24.0356 | 5500 | 0.6569 | 0.7407 |
Framework versions
- Transformers 4.41.2
- Pytorch 1.13.0+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1