Temo27Anas's picture
Model save
406615b verified
|
raw
history blame
3.13 kB
metadata
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: cont-vvt-gs-rot-flip-wtoken-f198-4.4-h768-t8.16.16
    results: []

cont-vvt-gs-rot-flip-wtoken-f198-4.4-h768-t8.16.16

This model is a fine-tuned version of google/vivit-b-16x2-kinetics400 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6569
  • Accuracy: 0.7407

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 5500

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.868 0.0402 221 0.7216 0.6931
0.715 1.0402 442 0.6954 0.7037
0.7041 2.0402 663 0.7269 0.7460
0.5228 3.0402 884 0.7158 0.7407
0.7336 4.0402 1105 0.6833 0.7196
0.5987 5.0402 1326 0.6155 0.7725
0.8574 6.0402 1547 0.6601 0.7302
0.6805 7.0402 1768 0.6374 0.7460
0.8086 8.0402 1989 0.6896 0.6984
0.6552 9.0402 2210 0.6535 0.7090
0.7846 10.0402 2431 0.6646 0.7354
0.6114 11.0402 2652 0.6111 0.7619
0.7435 12.0402 2873 0.6779 0.7354
0.7742 13.0402 3094 0.7390 0.6878
0.6558 14.0402 3315 0.6284 0.7354
0.4822 15.0402 3536 0.7071 0.7196
0.7686 16.0402 3757 0.6982 0.7302
0.7945 17.0402 3978 0.6336 0.7566
0.5755 18.0402 4199 0.5924 0.7460
0.6895 19.0402 4420 0.6227 0.7513
0.4775 20.0402 4641 0.5846 0.7672
0.8137 21.0402 4862 0.6724 0.7354
0.4226 22.0402 5083 0.6772 0.7460
0.6616 23.0402 5304 0.6856 0.7407
0.5246 24.0356 5500 0.6569 0.7407

Framework versions

  • Transformers 4.41.2
  • Pytorch 1.13.0+cu117
  • Datasets 2.20.0
  • Tokenizers 0.19.1