metadata
license: cc-by-nc-4.0
base_model: facebook/timesformer-base-finetuned-k400
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tsf-gs-rots-wtoken-DRPT0.3-r128-f150-6.6-h768-i3072-p32-b8-e50
results: []
tsf-gs-rots-wtoken-DRPT0.3-r128-f150-6.6-h768-i3072-p32-b8-e50
This model is a fine-tuned version of facebook/timesformer-base-finetuned-k400 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7417
- Accuracy: 0.6150
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 5400
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1273 | 0.0202 | 109 | 1.1116 | 0.3262 |
1.1488 | 1.0202 | 218 | 1.0997 | 0.3369 |
1.1365 | 2.0202 | 327 | 1.1016 | 0.3369 |
1.1232 | 3.0202 | 436 | 1.1009 | 0.3369 |
1.0927 | 4.0202 | 545 | 1.1017 | 0.3369 |
1.0807 | 5.0202 | 654 | 1.1055 | 0.3262 |
1.1257 | 6.0202 | 763 | 1.1005 | 0.3262 |
1.0961 | 7.0202 | 872 | 1.0999 | 0.3369 |
1.1192 | 8.0202 | 981 | 1.0997 | 0.3262 |
1.1039 | 9.0202 | 1090 | 1.0982 | 0.3369 |
1.1047 | 10.0202 | 1199 | 1.0988 | 0.3369 |
1.0662 | 11.0202 | 1308 | 1.3609 | 0.3743 |
1.197 | 12.0202 | 1417 | 1.1068 | 0.3369 |
1.1331 | 13.0202 | 1526 | 1.1085 | 0.3422 |
1.1174 | 14.0202 | 1635 | 1.1129 | 0.3262 |
1.0838 | 15.0202 | 1744 | 1.0893 | 0.4011 |
1.0943 | 16.0202 | 1853 | 1.0385 | 0.3904 |
1.0989 | 17.0202 | 1962 | 1.0832 | 0.5027 |
1.0326 | 18.0202 | 2071 | 0.9577 | 0.4813 |
1.0394 | 19.0202 | 2180 | 0.9385 | 0.6043 |
0.9952 | 20.0202 | 2289 | 0.8765 | 0.6096 |
0.9504 | 21.0202 | 2398 | 0.8307 | 0.6096 |
0.9256 | 22.0202 | 2507 | 0.8004 | 0.6471 |
0.8924 | 23.0202 | 2616 | 0.9152 | 0.5989 |
0.9158 | 24.0202 | 2725 | 0.7679 | 0.6952 |
0.8838 | 25.0202 | 2834 | 0.7533 | 0.6952 |
1.0359 | 26.0202 | 2943 | 0.7408 | 0.6845 |
0.8345 | 27.0202 | 3052 | 0.7069 | 0.7112 |
0.8803 | 28.0202 | 3161 | 0.7740 | 0.6684 |
0.7475 | 29.0202 | 3270 | 0.6999 | 0.7112 |
0.5596 | 30.0202 | 3379 | 0.8609 | 0.6364 |
0.8362 | 31.0202 | 3488 | 1.5082 | 0.4813 |
0.672 | 32.0202 | 3597 | 0.7459 | 0.7059 |
0.6874 | 33.0202 | 3706 | 0.9255 | 0.6845 |
0.6259 | 34.0202 | 3815 | 0.8475 | 0.6364 |
0.6356 | 35.0202 | 3924 | 0.8400 | 0.6791 |
0.6482 | 36.0202 | 4033 | 0.8579 | 0.6310 |
0.5495 | 37.0202 | 4142 | 1.5998 | 0.5241 |
0.6663 | 38.0202 | 4251 | 0.7969 | 0.7112 |
0.6363 | 39.0202 | 4360 | 1.1134 | 0.6845 |
0.6794 | 40.0202 | 4469 | 0.9227 | 0.6952 |
0.6632 | 41.0202 | 4578 | 1.1304 | 0.6631 |
0.7225 | 42.0202 | 4687 | 0.9182 | 0.7112 |
0.6032 | 43.0202 | 4796 | 1.2193 | 0.6578 |
0.5534 | 44.0202 | 4905 | 1.4561 | 0.6524 |
0.4216 | 45.0202 | 5014 | 1.3694 | 0.6364 |
0.6082 | 46.0202 | 5123 | 1.5731 | 0.5989 |
0.7025 | 47.0202 | 5232 | 1.8556 | 0.6257 |
0.4275 | 48.0202 | 5341 | 1.7699 | 0.6257 |
0.462 | 49.0109 | 5400 | 1.7417 | 0.6150 |
Framework versions
- Transformers 4.41.2
- Pytorch 1.13.0+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1