Temur commited on
Commit
d1b82b4
·
1 Parent(s): e5dec27

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -27,7 +27,7 @@ model-index:
27
  value: {wer_result_on_test} #TODO (IMPORTANT): replace {wer_result_on_test} with the WER error rate you achieved on the common_voice test set. It should be in the format XX.XX (don't add the % sign here). **Please** remember to fill out this value after you evaluated your model, so that your model appears on the leaderboard. If you fill out this model card before evaluating your model, please remember to edit the model card afterward to fill in your value
28
  ---
29
 
30
- # Wav2Vec2-Large-XLSR-53-{language} #TODO: replace language with your {language}, *e.g.* French
31
 
32
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Georgian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
33
  When using this model, make sure that your speech input is sampled at 16kHz.
@@ -52,15 +52,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
- speech_array, sampling_rate = torchaudio.load(batch["path"])
56
- batch["speech"] = resampler(speech_array).squeeze().numpy()
57
- return batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
- logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
@@ -88,30 +88,30 @@ processor = Wav2Vec2Processor.from_pretrained("Temur/wav2vec2-Georgian-Daytona")
88
  model = Wav2Vec2ForCTC.from_pretrained("Temur/wav2vec2-Georgian-Daytona")
89
  model.to("cuda")
90
 
91
- chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
- batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
- speech_array, sampling_rate = torchaudio.load(batch["path"])
99
- batch["speech"] = resampler(speech_array).squeeze().numpy()
100
- return batch
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
- inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
- with torch.no_grad():
110
- logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
- pred_ids = torch.argmax(logits, dim=-1)
113
- batch["pred_strings"] = processor.batch_decode(pred_ids)
114
- return batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117
 
 
27
  value: {wer_result_on_test} #TODO (IMPORTANT): replace {wer_result_on_test} with the WER error rate you achieved on the common_voice test set. It should be in the format XX.XX (don't add the % sign here). **Please** remember to fill out this value after you evaluated your model, so that your model appears on the leaderboard. If you fill out this model card before evaluating your model, please remember to edit the model card afterward to fill in your value
28
  ---
29
 
30
+ # Wav2Vec2-Large-XLSR-53-Georgian
31
 
32
  Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Georgian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
33
  When using this model, make sure that your speech input is sampled at 16kHz.
 
52
  # Preprocessing the datasets.
53
  # We need to read the aduio files as arrays
54
  def speech_file_to_array_fn(batch):
55
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
56
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
57
+ \treturn batch
58
 
59
  test_dataset = test_dataset.map(speech_file_to_array_fn)
60
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
61
 
62
  with torch.no_grad():
63
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
64
 
65
  predicted_ids = torch.argmax(logits, dim=-1)
66
 
 
88
  model = Wav2Vec2ForCTC.from_pretrained("Temur/wav2vec2-Georgian-Daytona")
89
  model.to("cuda")
90
 
91
+ chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' # TODO: adapt this list to include all special characters you removed from the data
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
99
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
100
+ \treturn batch
101
 
102
  test_dataset = test_dataset.map(speech_file_to_array_fn)
103
 
104
  # Preprocessing the datasets.
105
  # We need to read the aduio files as arrays
106
  def evaluate(batch):
107
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
108
 
109
+ \twith torch.no_grad():
110
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
111
 
112
+ \tpred_ids = torch.argmax(logits, dim=-1)
113
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
114
+ \treturn batch
115
 
116
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
117