File size: 2,248 Bytes
709a373
66b50ba
 
 
 
709a373
 
66b50ba
 
 
2faa000
 
 
 
c3280d9
 
66b50ba
 
c3280d9
66b50ba
c3280d9
bff715a
66b50ba
 
 
c3280d9
66b50ba
c3280d9
66b50ba
 
 
 
 
 
 
 
 
 
 
c3280d9
66b50ba
c3280d9
66b50ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3280d9
 
66b50ba
c3280d9
66b50ba
 
 
2faa000
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: microsoft/resnet-34
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: resnet-fine_tuned
  results: []
datasets:
- Falah/Alzheimer_MRI
library_name: transformers
pipeline_tag: image-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# resnet-fine_tuned

This model is a fine-tuned version of [microsoft/resnet-34](https://huggingface.co/microsoft/resnet-34) on the Falah/Alzheimer_MRI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1983
- Accuracy: 0.9219

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9041        | 1.0   | 80   | 0.9659          | 0.5352   |
| 0.8743        | 2.0   | 160  | 0.9348          | 0.5797   |
| 0.7723        | 3.0   | 240  | 0.7793          | 0.6594   |
| 0.6864        | 4.0   | 320  | 0.6799          | 0.7031   |
| 0.5347        | 5.0   | 400  | 0.5596          | 0.7703   |
| 0.4282        | 6.0   | 480  | 0.5078          | 0.7766   |
| 0.4315        | 7.0   | 560  | 0.5455          | 0.7680   |
| 0.3747        | 8.0   | 640  | 0.4203          | 0.8266   |
| 0.2977        | 9.0   | 720  | 0.3926          | 0.8469   |
| 0.2252        | 10.0  | 800  | 0.3024          | 0.8742   |
| 0.2675        | 11.0  | 880  | 0.2731          | 0.8906   |
| 0.2136        | 12.0  | 960  | 0.3045          | 0.875    |
| 0.1998        | 13.0  | 1040 | 0.2370          | 0.9      |
| 0.2406        | 14.0  | 1120 | 0.2387          | 0.9086   |
| 0.1873        | 15.0  | 1200 | 0.1983          | 0.9219   |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cpu
- Datasets 2.13.1
- Tokenizers 0.13.3