File size: 2,248 Bytes
709a373 66b50ba 709a373 66b50ba 2faa000 c3280d9 66b50ba c3280d9 66b50ba c3280d9 bff715a 66b50ba c3280d9 66b50ba c3280d9 66b50ba c3280d9 66b50ba c3280d9 66b50ba c3280d9 66b50ba c3280d9 66b50ba 2faa000 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
base_model: microsoft/resnet-34
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: resnet-fine_tuned
results: []
datasets:
- Falah/Alzheimer_MRI
library_name: transformers
pipeline_tag: image-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# resnet-fine_tuned
This model is a fine-tuned version of [microsoft/resnet-34](https://huggingface.co/microsoft/resnet-34) on the Falah/Alzheimer_MRI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1983
- Accuracy: 0.9219
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9041 | 1.0 | 80 | 0.9659 | 0.5352 |
| 0.8743 | 2.0 | 160 | 0.9348 | 0.5797 |
| 0.7723 | 3.0 | 240 | 0.7793 | 0.6594 |
| 0.6864 | 4.0 | 320 | 0.6799 | 0.7031 |
| 0.5347 | 5.0 | 400 | 0.5596 | 0.7703 |
| 0.4282 | 6.0 | 480 | 0.5078 | 0.7766 |
| 0.4315 | 7.0 | 560 | 0.5455 | 0.7680 |
| 0.3747 | 8.0 | 640 | 0.4203 | 0.8266 |
| 0.2977 | 9.0 | 720 | 0.3926 | 0.8469 |
| 0.2252 | 10.0 | 800 | 0.3024 | 0.8742 |
| 0.2675 | 11.0 | 880 | 0.2731 | 0.8906 |
| 0.2136 | 12.0 | 960 | 0.3045 | 0.875 |
| 0.1998 | 13.0 | 1040 | 0.2370 | 0.9 |
| 0.2406 | 14.0 | 1120 | 0.2387 | 0.9086 |
| 0.1873 | 15.0 | 1200 | 0.1983 | 0.9219 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cpu
- Datasets 2.13.1
- Tokenizers 0.13.3 |