china-only-mar11

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("Thang203/china-only-mar11")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 20
  • Number of training documents: 847
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 language - llms - models - data - large 21 -1_language_llms_models_data
0 visual - image - multimodal - models - language 205 0_visual_image_multimodal_models
1 embodied - driving - navigation - robot - robotic 142 1_embodied_driving_navigation_robot
2 recommendation - user - recommendations - systems - behavior 16 2_recommendation_user_recommendations_systems
3 agents - social - bots - interactions - ai agents 16 3_agents_social_bots_interactions
4 rl - reinforcement learning - reinforcement - learning - policy 15 4_rl_reinforcement learning_reinforcement_learning
5 molecular - design - property - prediction - gnns 17 5_molecular_design_property_prediction
6 code - code generation - generation - software - programming 11 6_code_code generation_generation_software
7 medical - knowledge - medical knowledge - llms - language 73 7_medical_knowledge_medical knowledge_llms
8 extraction - information extraction - event - information - relation 16 8_extraction_information extraction_event_information
9 safety - llms - robustness - instructions - assurance 15 9_safety_llms_robustness_instructions
10 reasoning - prompting - cot - llms - chainofthought 14 10_reasoning_prompting_cot_llms
11 knowledge - language - knowledge graph - web - kg 52 11_knowledge_language_knowledge graph_web
12 question - answering - commonsense - question answering - knowledge 17 12_question_answering_commonsense_question answering
13 models - language - model - training - language models 18 13_models_language_model_training
14 dialogue - dialog - models - responses - model 104 14_dialogue_dialog_models_responses
15 detection - fake - news - detectors - texts 31 15_detection_fake_news_detectors
16 chatgpt - sentiment - evaluation - sentiment analysis - human 16 16_chatgpt_sentiment_evaluation_sentiment analysis
17 chinese - evaluation - models - language - language models 22 17_chinese_evaluation_models_language
18 translation - arabic - languages - language - models 26 18_translation_arabic_languages_language

Training hyperparameters

  • calculate_probabilities: False
  • language: english
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: 20
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.25.2
  • HDBSCAN: 0.8.33
  • UMAP: 0.5.5
  • Pandas: 1.5.3
  • Scikit-Learn: 1.2.2
  • Sentence-transformers: 2.6.1
  • Transformers: 4.38.2
  • Numba: 0.58.1
  • Plotly: 5.15.0
  • Python: 3.10.12
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.