vit-Facial-Expression-Recognition
This model is a fine-tuned version of motheecreator/vit-Facial-Expression-Recognition on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3658
- Accuracy: 0.8753
- F1: 0.8737
- Precision: 0.8749
- Recall: 0.8753
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
4.5618 | 0.2164 | 100 | 0.3710 | 0.8762 | 0.8746 | 0.8752 | 0.8762 |
4.6091 | 0.4328 | 200 | 0.3677 | 0.8761 | 0.8747 | 0.8762 | 0.8761 |
4.5423 | 0.6492 | 300 | 0.3695 | 0.8748 | 0.8730 | 0.8745 | 0.8748 |
4.6307 | 0.8656 | 400 | 0.3745 | 0.8711 | 0.8692 | 0.8730 | 0.8711 |
4.3953 | 1.0801 | 500 | 0.3745 | 0.8727 | 0.8711 | 0.8724 | 0.8727 |
4.341 | 1.2965 | 600 | 0.3803 | 0.8688 | 0.8674 | 0.8688 | 0.8688 |
4.5471 | 1.5128 | 700 | 0.3841 | 0.8713 | 0.8699 | 0.8710 | 0.8713 |
4.522 | 1.7292 | 800 | 0.3836 | 0.8679 | 0.8662 | 0.8678 | 0.8679 |
4.5596 | 1.9456 | 900 | 0.3885 | 0.8672 | 0.8649 | 0.8678 | 0.8672 |
4.1491 | 2.1601 | 1000 | 0.3849 | 0.8691 | 0.8677 | 0.8689 | 0.8691 |
4.1037 | 2.3765 | 1100 | 0.3906 | 0.8667 | 0.8647 | 0.8669 | 0.8667 |
4.0033 | 2.5929 | 1200 | 0.3784 | 0.8704 | 0.8687 | 0.8699 | 0.8704 |
3.9759 | 2.8093 | 1300 | 0.3677 | 0.8752 | 0.8737 | 0.8747 | 0.8752 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.