TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Skywork 13B Base - GPTQ
- Model creator: Skywork
- Original model: Skywork 13B Base
Description
This repo contains GPTQ model files for Skywork's Skywork 13B Base.
Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
These files were quantised using hardware kindly provided by Massed Compute.
Repositories available
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- Skywork's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: None
{prompt}
Known compatible clients / servers
These GPTQ models are known to work in the following inference servers/webuis.
This may not be a complete list; if you know of others, please let me know!
Provided files, and GPTQ parameters
Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
Explanation of GPTQ parameters
- Bits: The bit size of the quantised model.
- GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
- Act Order: True or False. Also known as
desc_act
. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now. - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
- GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
- Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
- ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
---|---|---|---|---|---|---|---|---|---|
main | 4 | 128 | Yes | 0.1 | wikitext | 8192 | 8.11 GB | No | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
gptq-4bit-32g-actorder_True | 4 | 32 | Yes | 0.1 | wikitext | 8192 | 8.88 GB | No | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
gptq-8bit--1g-actorder_True | 8 | None | Yes | 0.1 | wikitext | 8192 | 9.99 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
gptq-8bit-128g-actorder_True | 8 | 128 | Yes | 0.1 | wikitext | 8192 | 9.94 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
gptq-8bit-32g-actorder_True | 8 | 32 | Yes | 0.1 | wikitext | 8192 | 9.96 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
gptq-4bit-64g-actorder_True | 4 | 64 | Yes | 0.1 | wikitext | 8192 | 8.36 GB | No | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
How to download, including from branches
In text-generation-webui
To download from the main
branch, enter TheBloke/Skywork-13B-base-GPTQ
in the "Download model" box.
To download from another branch, add :branchname
to the end of the download name, eg TheBloke/Skywork-13B-base-GPTQ:gptq-4bit-32g-actorder_True
From the command line
I recommend using the huggingface-hub
Python library:
pip3 install huggingface-hub
To download the main
branch to a folder called Skywork-13B-base-GPTQ
:
mkdir Skywork-13B-base-GPTQ
huggingface-cli download TheBloke/Skywork-13B-base-GPTQ --local-dir Skywork-13B-base-GPTQ --local-dir-use-symlinks False
To download from a different branch, add the --revision
parameter:
mkdir Skywork-13B-base-GPTQ
huggingface-cli download TheBloke/Skywork-13B-base-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir Skywork-13B-base-GPTQ --local-dir-use-symlinks False
More advanced huggingface-cli download usage
If you remove the --local-dir-use-symlinks False
parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: ~/.cache/huggingface
), and symlinks will be added to the specified --local-dir
, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
The cache location can be changed with the HF_HOME
environment variable, and/or the --cache-dir
parameter to huggingface-cli
.
For more documentation on downloading with huggingface-cli
, please see: HF -> Hub Python Library -> Download files -> Download from the CLI.
To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer
:
pip3 install hf_transfer
And set environment variable HF_HUB_ENABLE_HF_TRANSFER
to 1
:
mkdir Skywork-13B-base-GPTQ
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Skywork-13B-base-GPTQ --local-dir Skywork-13B-base-GPTQ --local-dir-use-symlinks False
Windows Command Line users: You can set the environment variable by running set HF_HUB_ENABLE_HF_TRANSFER=1
before the download command.
With git
(not recommended)
To clone a specific branch with git
, use a command like this:
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Skywork-13B-base-GPTQ
Note that using Git with HF repos is strongly discouraged. It will be much slower than using huggingface-hub
, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the .git
folder as a blob.)
How to easily download and use this model in text-generation-webui
Please make sure you're using the latest version of text-generation-webui.
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
Click the Model tab.
Under Download custom model or LoRA, enter
TheBloke/Skywork-13B-base-GPTQ
.- To download from a specific branch, enter for example
TheBloke/Skywork-13B-base-GPTQ:gptq-4bit-32g-actorder_True
- see Provided Files above for the list of branches for each option.
- To download from a specific branch, enter for example
Click Download.
The model will start downloading. Once it's finished it will say "Done".
In the top left, click the refresh icon next to Model.
In the Model dropdown, choose the model you just downloaded:
Skywork-13B-base-GPTQ
The model will automatically load, and is now ready for use!
If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file
quantize_config.json
.
- Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file
Once you're ready, click the Text Generation tab and enter a prompt to get started!
Serving this model from Text Generation Inference (TGI)
It's recommended to use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0
Example Docker parameters:
--model-id TheBloke/Skywork-13B-base-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
pip3 install huggingface-hub
from huggingface_hub import InferenceClient
endpoint_url = "https://your-endpoint-url-here"
prompt = "Tell me about AI"
prompt_template=f'''{prompt}
'''
client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1)
print(f"Model output: {response}")
How to use this GPTQ model from Python code
Install the necessary packages
Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
pip3 install transformers optimum
pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
pip3 uninstall -y auto-gptq
git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
git checkout v0.4.2
pip3 install .
You can then use the following code
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_name_or_path = "TheBloke/Skywork-13B-base-GPTQ"
# To use a different branch, change revision
# For example: revision="gptq-4bit-32g-actorder_True"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
device_map="auto",
trust_remote_code=True,
revision="main")
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
prompt = "Tell me about AI"
prompt_template=f'''{prompt}
'''
print("\n\n*** Generate:")
input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
print(tokenizer.decode(output[0]))
# Inference can also be done using transformers' pipeline
print("*** Pipeline:")
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1
)
print(pipe(prompt_template)[0]['generated_text'])
Compatibility
The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
ExLlama is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
For a list of clients/servers, please see "Known compatible clients / servers", above.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: Skywork's Skywork 13B Base
👨💻 Github • 🤗 Hugging Face• 🤖 ModelScope • 💬 WeChat• 📜Tech Report
模型介绍(Introduction)
Skywork-13B-Base模型在高质量清洗过滤的3.2万亿个多语言(主要是中文和英文)和代码数据上进行预训练,它在多种评测和各种基准测试上都展现了同等规模模型的最佳效果。
Skywork-13B-Base: The model was trained on a high-quality cleaned dataset consisting of 3.2 trillion multilingual data (mainly Chinese and English) and code. It has demonstrated the best performance among models of similar scale in various evaluations and benchmark tests.
如果您希望了解更多的信息,如训练方案,评估方法,请参考我们的技术报告,Skymath论文,SkyworkMM论文。
If you are interested in more training and evaluation details, please refer to our technical report, Skymath paper and SkyworkMM paper.
训练数据(Training Data)
我们精心搭建了数据清洗流程对文本中的低质量数据、有害信息、敏感信息进行清洗过滤。我们的Skywork-13B-Base模型是在清洗后的3.2TB高质量中、英、代码数据上进行训练,其中英文占比52.2%,中文占比39.6%,代码占比8%,在兼顾中文和英文上的表现的同时,代码能力也能有保证。
We have developed a data cleaning pipeline with great care to effectively clean and filter low-quality data and eliminate harmful information from text data. Our Skywork-13B-Base model is trained on a dataset with 3.2TB tokens that consists of high-quality Chinese, English, and code data, all of which have been thoroughly cleaned. The English data comprises 52.2% of the dataset, the Chinese data accounts for 39.6%, and the code data makes up 8%. This comprehensive approach ensures optimal performance for both Chinese and English while also maintaining the ability to handle code.
Category | Percentage | |
---|---|---|
English | Webpages | 39.8% |
Books | 3.6% | |
Academic Papers | 3.0% | |
Encyclopedia | 0.5% | |
Miscellany | 2.9% | |
Chinese | Webpages | 30.4% |
Social Media | 5.5% | |
Encyclopedia | 0.8% | |
Miscellany | 3.1% | |
Other Lang. | Encyclopedia | 2.4% |
Code | Github | 8.0% |
模型结构(Model Structure)
与Llama-2-13B模型对比,天工Skywork-13B模型采用相对更加瘦长的网络结构,层数为52层,同时将FFN Dim和Hidden Dim缩小到12288和4608,从而保证模型参数量和原始Llama-2-13B模型相当。根据我们前期实验对比,相对瘦长的网络结构在大Batch Size训练下可以取得更好的泛化效果。Skywork-13B和Llama-2-13B模型的对比如下:
Compared to the Llama2-13B model, the Skywork-13B model adopts a relatively thinner and deeper network structure with 52 layers. At the same time, the FFN Dim and Hidden Dim are reduced to 12288 and 4608, respectively, to ensure that the model has a similar number of parameters as the original Llama-13B model. Based on our preliminary experimental results, a relatively thinner and deeper network structure can achieve better generalization performance under large batch size training. The detailed comparison between the Skywork-13B and Llama-2-13B models is as follows:
Model Structure | Llama2-13B | Skywork-13B |
---|---|---|
Vocab. Size | 32,000 | 65,536 |
Hidden Dim. | 5,120 | 4,608 |
FFN Dim. | 13,696 | 12,288 |
Head Dim. | 128 | 128 |
Num. Heads | 40 | 36 |
Num. Layers | 40 | 52 |
Seq. Len. | 4,096 | 4,096 |
Positional Embedding | RoPE | RoPE |
分词器(Tokenizer)
我们使用Byte-Pair Encoding(BPE)对数据进行分词,词表大小为65536,其中拉丁字符和子词为32000个,汉字和Unicode符号8000个,汉语词语25519个,剩下的17个为保留字。
We use Byte-Pair Encoding (BPE) to tokenize the data, with a vocabulary size of 65536. Among them, there are 32000 Latin characters and subwords, 8000 Chinese characters and Unicode symbols, 25519 Chinese words, and the remaining 17 are reserved words.
Category | Size |
---|---|
Latin based words & subwords | 32000 |
Chinese characters & Unicode symbols | 8000 |
Chinese words | 25519 |
Reserved symbols | 17 |
Total | 65536 |
模型评估(Evaluation)
领域数据困惑度评估(Perplexity Evaluaiton)
语言模型训练的本质上是让预测下一个词更准确。基于这个认知,我们认为评估基础大模型一个重要的方式是评估在各大领域上语言模型生成文章的概率。在模型训练中预测下一个词的概率一般使用Cross Entropy损失函数,整体的损失函数为每个位置预测真实词损失的平均,则有:
其中$n$是文档的长度,即token数,$p_i$是位置i上真实词的概率,我们知道文档中每一个位置上真实词的概率的联乘则为生成该文档的概率,如此我们就将loss和生成文章的概率联系在了一起。而不同模型因为使用的分词器不同,具有不同的token数,因此对损失函数乘以token数目$n$,这样就仅考虑生成文章的概率部分,不同模型也可以进行比较。我们将标准化后loss取指数转换成perplexity,使得模型的差异更加可读。为了阅读方便后续提到的loss和ppl为模型标准化后的loss和perplexity。
基于上述分析,我们对对多个领域筛选出2023年9月份新发布的几百到上千篇高质量文章,并人工进行了核对。保证所有的测试数据不在天工模型以及其他所有模型的训练集中,并且测试数据的来源也足够广泛,质量也高。我们可以选取当前最新的文章评测不同模型的ppl,模型很难作弊。 下图列出了不同开源模型,天工Skywork-13B-Base取得最优效果,证明了我们的Base模型的基础能力处于国内开源模型中文最强水平。
We have chosen several hundred to thousands of high-quality articles that were published after September 1, 2023 across various fields. We have manually verified these articles to ensure their quality. It is important to note that none of the test data used in evaluating the Skywork model or any other models is included in their training set. Furthermore, the test data is diverse and of high quality, making it challenging for the models to gain an unfair advantage.
The figure below displays the performance of different open source models. Skywork-13B-Base achieves the best results.
Tech | Movie | Gov. | Game | Finance | General | Average | |
---|---|---|---|---|---|---|---|
MOSS-7B | 20.83 | 39.66 | 11.08 | 31.24 | 10.59 | 13.25 | 18.50 |
InternLM-7B | 13.43 | 24.90 | 5.88 | 19.78 | 6.17 | 8.10 | 11.17 |
Qwen-7B | 13.39 | 25.16 | 5.55 | 19.26 | 5.76 | 7.78 | 10.83 |
Baichuan2-7B | 12.89 | 23.26 | 5.34 | 18.36 | 5.68 | 7.62 | 10.41 |
LLaMA2-13B | 23.26 | 50.66 | 18.09 | 32.52 | 14.85 | 16.55 | 23.54 |
Xverse-13B | 12.55 | 23.49 | 5.20 | 17.69 | 5.54 | 7.46 | 10.19 |
Baichuan-13B | 12.38 | 22.46 | 5.21 | 17.59 | 5.42 | 7.37 | 10.03 |
Baichuan2-13B | 12.14 | 21.85 | 5.05 | 17.15 | 5.35 | 7.24 | 9.81 |
Qwen-14B | 11.90 | 22.43 | 4.89 | 16.94 | 5.24 | 7.03 | 9.67 |
InternLM-20B | 12.34 | 22.06 | 5.75 | 17.45 | 5.73 | 7.78 | 10.34 |
Aquila2-34B | 14.62 | 29.09 | 5.72 | 21.78 | 5.83 | 8.45 | 11.73 |
Skywork-13B-Base | 11.58 | 21.84 | 4.76 | 17.28 | 4.92 | 6.82 | 9.42 |
评测数据和评测脚本(Loss Evaluation)
我们将评测数据和评测脚本也进行了开源,下载github上的代码运行下面命令则可以复现我们的结果。
We have also open-sourced the data and evaluation scripts. You can reproduce our results by running the following command.
bash bash_scripts/skywork_eval_loss.sh
Benchmark评估(Benchmark Results)
我们评估了各大权威评测benchmark上的结果作为参考,包括C-Eval,MMLU,CMMLU,GSM8K。遵循之前的评估流程,C-Eval、MMLU、CMMLU测试5-shot结果,GSM8K测试8-shot结果。可以看到Skywork-13B-Base模型在中文开源模型中处于前列,在同等参数规模下为最优水平。
We evaluated Skywork-13B-Base on several popular benchmarks, including C-Eval, MMLU, CMMLU, and GSM8K. Following the previous evaluation process, we tested the 5-shot results of C-Eval, MMLU, and CMMLU, and the 8-shot results of GSM8K. It can be seen that the Skywork-13B-Base model is among the top models in the Chinese open source model community, performing at an optimal level with the same parameter scale.
Model | C-Eval | CMMLU | MMLU | GSM8K |
---|---|---|---|---|
LLaMA-1-13B-Base | 35.5 | 31.2 | 46.9 | 17.8 |
Open-LLaMA-13B | 27.1 | 26.7 | 42.7 | 12.4 |
LLaMA-2-13B-Base | 36.5 | 36.6 | 54.8 | 28.7 |
InternLM-20B | 58.8 | - | 62.0 | 52.6 |
Qwen-14B-Base | 72.1 | 71.0 | 66.3 | 61.3 |
Aquila2-34B-Base | 63.1 | 71.4 | 64.2 | 58.4 |
XVERSE-13B-Base | 54.7 | - | 55.1 | - |
Baichuan-13B-Base | 52.4 | 55.3 | 51.6 | 26.6 |
Baichuan-2-13B-Base | 58.1 | 62.0 | 59.2 | 52.3 |
Skywork-13B-Base (ours) | 60.6 | 61.8 | 62.1 | 55.8 |
Benchmark评估详细结果
我们给出Skywork-13B-Base模型在C-Eval,CMMLU,MMLU上模型的详细结果。
We provide detailed results of the Skywork-13B-Base model on C-EVAL, CMMLU, and MMLU.
Benchmark | STEM | Humanities | Social Science | Other | China Specific | Hard | Average |
---|---|---|---|---|---|---|---|
C-EVAL | 51.2 | 67.8 | 74.6 | 57.5 | - | 39.4 | 60.6 |
CMMLU | 49.5 | 69.3 | 65.9 | 63.3 | 64.2 | - | 61.8 |
MMLU | 51.6 | 58.0 | 72.5 | 68.8 | - | - | 62.1 |
快速开始(Quickstart)
我们将模型参数、配置文件、tokenizer等在huggingface和modelscope上进行了开源。
We have open-sourced the model parameters, configuration files, tokenizer, and more on Huggingface and Modelscope.
依赖安装(Requirements)
- Python 3.8及以上版本
- Pytorch 2.0及以上版本
- CUDA建议使用11.4以上版本。
Skywork-13B-Base模型,Skywork-13B-Chat模型和Skywork-13B-Math模型运行下面的脚本进行Python依赖安装。
- Python 3.8 and above
- Pytorch 2.0 and above
- CUDA 11.4 and above are recommended.
Skywork-13B-Base model, Skywork-13B-Chat model, and Skywork-13B-Math model run the following script for Python dependency installation:
pip install -r requirements.txt
Huggingface模型测试(Demonstration)
Base 模型推理(Base Model Inference)
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from transformers.generation import GenerationConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("SkyworkAI/Skywork-13B-Base", trust_remote_code=True)
>>> model = AutoModelForCausalLM.from_pretrained("SkyworkAI/Skywork-13B-Base", device_map="auto", trust_remote_code=True).eval()
>>> inputs = tokenizer('陕西的省会是西安', return_tensors='pt').to(model.device)
>>> response = model.generate(inputs.input_ids, max_length=128)
>>> print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True))
陕西的省会是西安,西安是我国著名的古都,在历史上有十三个朝代在此建都,所以西安又被称为“十三朝古都”。西安是我国著名的旅游城市,每年都有大量的游客来到西安旅游,西安的旅游资源非常丰富,有很多著名的旅游景点,比如秦始皇兵马俑、大雁塔、华清池、大唐芙蓉园、西安城墙、大明宫国家遗址公园、西安碑林博物馆、西安钟楼、西安鼓楼、西安半坡博物馆、西安大兴善寺、西安小雁塔
>>> inputs = tokenizer('陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州', return_tensors='pt').to(model.device)
>>> response = model.generate(inputs.input_ids, max_length=128)
>>> print(tokenizer.decode(response.cpu()[0], skip_special_tokens=True))
陕西的省会是西安,甘肃的省会是兰州,河南的省会是郑州,湖北的省会是武汉,湖南的省会是长沙,江西的省会是南昌,安徽的省会是合肥,江苏的省会是南京,浙江的省会是杭州,福建的省会是福州,广东的省会是广州,广西的省会是南宁,海南的省会是海口,四川的省会是成都,贵州的省会是贵阳,云南的省会是昆明,西藏的省会是拉萨,青海的省会是西宁,宁夏的省会是银川,新疆的省会是乌鲁木齐。
模型微调(Fine-tuning)
全量微调(Full-parameter Fine-tuning)
使用Skywork-13B-Base模型进行预训练微调
## preprocess continue pretraining data
## Because pre-training data is usually large, we use a script to process the training data separately.
python train/pt_data_preprocess.py \
-t $MODEL_PATH \
-i data/pt_train.jsonl \
-o data_cache/pt_train_demo
## launch training
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export MODEL_PATH=skywork-13b-models/skywork-13b-base
export DATA_CACHE_DIR=data_cache/pt_train_demo/pt_train
bash bash_scripts/skywork_13b_pt.sh
使用Skywork-13B-Base模型进行有监督微调(SFT, Supevise Fine-tuning)
## preprocess data and launch training
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export SFT_DATA_DIR=data/sft_data
export DATA_CACHE_DIR=data_cache/sft_train_demo
bash bash_scripts/skywork_13b_sft.sh
LoRA微调(PEFT)
使用Skywork-13B-Base模型以及LoRA进行预训练微调
## preprocess continue pretraining data
## Because pre-training data is usually large, we use a script to process the training data separately.
python train/pt_data_preprocess.py \
-t $MODEL_PATH \
-i data/pt_train.jsonl \
-o data_cache/pt_train_demo
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export MODEL_PATH=skywork-13b-models/skywork-13b-base
export DATA_CACHE_DIR=data_cache/pt_train_demo/pt_train
bash bash_scripts/skywork_13b_pt_lora.sh
使用Skywork-13B-Base模型以及LoRA进行有监督微调(SFT, Supevise Fine-tuning)
export WANDB_API_KEY=YOUR_WANDB_KEY
export WANDB_ENTITY=skywork
export WANDB_PROJECT=skywork-13b-opensource
export SFT_DATA_DIR=data/sft_data
export DATA_CACHE_DIR=data_cache/sft_train_demo
bash bash_scripts/skywork_13b_sft_lora.sh
声明和协议(Declaration and License Agreement)
声明(Declaration)
我们在此声明,不要利用Skywork模型进行任何危害国家社会安全或违法的活动。另外,我们也要求使用者不要将 Skywork 模型用于未经适当安全审查和备案的互联网服务。我们希望所有的使用者都能遵守这个原则,确保科技的发展能在规范和合法的环境下进行。
我们已经尽我们所能,来确保模型训练过程中使用的数据的合规性。然而,尽管我们已经做出了巨大的努力,但由于模型和数据的复杂性,仍有可能存在一些无法预见的问题。因此,如果由于使用skywork开源模型而导致的任何问题,包括但不限于数据安全问题、公共舆论风险,或模型被误导、滥用、传播或不当利用所带来的任何风险和问题,我们将不承担任何责任。
We hereby declare that the Skywork model should not be used for any activities that pose a threat to national or societal security or engage in unlawful actions. Additionally, we request users not to deploy the Skywork model for internet services without appropriate security reviews and records. We hope that all users will adhere to this principle to ensure that technological advancements occur in a regulated and lawful environment.
We have done our utmost to ensure the compliance of the data used during the model's training process. However, despite our extensive efforts, due to the complexity of the model and data, there may still be unpredictable risks and issues. Therefore, if any problems arise as a result of using the Skywork open-source model, including but not limited to data security issues, public opinion risks, or any risks and problems arising from the model being misled, abused, disseminated, or improperly utilized, we will not assume any responsibility.
协议(License Agreement)
社区使用Skywork模型需要遵循《Skywork 模型社区许可协议》。Skywork模型支持商业用途,如果您计划将Skywork模型或其衍生品用于商业目的,无需再次申请, 但请您仔细阅读《Skywork 模型社区许可协议》并严格遵守相关条款。
The community usage of Skywork model requires Skywork Community License. The Skywork model supports commercial use. If you plan to use the Skywork model or its derivatives for commercial purposes, you must abide by terms and conditions within Skywork Community License.
引用和联系我们(Contact Us and Citation)
如果您觉得我们的工作对您有帮助,欢迎引用我们的论文~
If you find our work helpful, please feel free to cite our paper~
@misc{wei2023skywork,
title={Skywork: A More Open Bilingual Foundation Model},
author={Tianwen Wei and Liang Zhao and Lichang Zhang and Bo Zhu and Lijie Wang and Haihua Yang and Biye Li and Cheng Cheng and Weiwei Lü and Rui Hu and Chenxia Li and Liu Yang and Xilin Luo and Xuejie Wu and Lunan Liu and Wenjun Cheng and Peng Cheng and Jianhao Zhang and Xiaoyu Zhang and Lei Lin and Xiaokun Wang and Yutuan Ma and Chuanhai Dong and Yanqi Sun and Yifu Chen and Yongyi Peng and Xiaojuan Liang and Shuicheng Yan and Han Fang and Yahui Zhou},
year={2023},
eprint={2310.19341},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@article{skyworkmath,
title={SkyMath: Technical Report},
author={Liu Yang, Haihua Yang, Wenjun Cheng, Lei Lin, Chenxia Li, Yifu Chen, Lunan Liu, Jianfei Pan, Tianwen Wei, Biye Li, Liang Zhao, Lijie Wang, Bo Zhu, Guoliang Li, Xuejie Wu, Xilin Luo, Rui Hu},
journal={arXiv preprint arXiv: 2310.16713},
url={https://arxiv.org/abs/2310.16713},
year={2023}
}
@article{Skywork_Multi-Modal_Group_Empirical_Study_Towards_2023,
author = {Skywork Multi-Modal Group},
month = sep,
title = {{Empirical Study Towards Building An Effective Multi-Modal Large Language Model}},
year = {2023}
}
- Downloads last month
- 13
Model tree for TheBloke/Skywork-13B-base-GPTQ
Base model
Skywork/Skywork-13B-base