Text Generation
Transformers
English
llama
TheBlokeAI

TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)


Synthia 13B - GGML

Description

This repo contains GGML format model files for Migel Tissera's Synthia 13B.

Important note regarding GGML files.

The GGML format has now been superseded by GGUF. As of August 21st 2023, llama.cpp no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.

Please use the GGUF models instead.

About GGML

GGML files are for CPU + GPU inference using llama.cpp and libraries and UIs which support this format, such as:

  • text-generation-webui, the most popular web UI. Supports NVidia CUDA GPU acceleration.
  • KoboldCpp, a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
  • LM Studio, a fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
  • LoLLMS Web UI, a great web UI with CUDA GPU acceleration via the c_transformers backend.
  • ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
  • llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.

Repositories available

Prompt template: Orca-Vicuna

SYSTEM: {system_message}
USER: {prompt}
ASSISTANT:

Compatibility

These quantised GGML files are compatible with llama.cpp between June 6th (commit 2d43387) and August 21st 2023.

For support with latest llama.cpp, please use GGUF files instead.

The final llama.cpp commit with support for GGML was: dadbed99e65252d79f81101a392d0d6497b86caa

As of August 23rd 2023 they are still compatible with all UIs, libraries and utilities which use GGML. This may change in the future.

Explanation of the new k-quant methods

Click to see details

The new methods available are:

  • GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
  • GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
  • GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
  • GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
  • GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
  • GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.

Refer to the Provided Files table below to see what files use which methods, and how.

Provided files

Name Quant method Bits Size Max RAM required Use case
synthia-13b.ggmlv3.q2_K.bin q2_K 2 5.51 GB 8.01 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors.
synthia-13b.ggmlv3.q3_K_S.bin q3_K_S 3 5.66 GB 8.16 GB New k-quant method. Uses GGML_TYPE_Q3_K for all tensors
synthia-13b.ggmlv3.q3_K_M.bin q3_K_M 3 6.31 GB 8.81 GB New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
synthia-13b.ggmlv3.q3_K_L.bin q3_K_L 3 6.93 GB 9.43 GB New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K
synthia-13b.ggmlv3.q4_0.bin q4_0 4 7.37 GB 9.87 GB Original quant method, 4-bit.
synthia-13b.ggmlv3.q4_K_S.bin q4_K_S 4 7.37 GB 9.87 GB New k-quant method. Uses GGML_TYPE_Q4_K for all tensors
synthia-13b.ggmlv3.q4_K_M.bin q4_K_M 4 7.87 GB 10.37 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K
synthia-13b.ggmlv3.q4_1.bin q4_1 4 8.17 GB 10.67 GB Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
synthia-13b.ggmlv3.q5_0.bin q5_0 5 8.97 GB 11.47 GB Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference.
synthia-13b.ggmlv3.q5_K_S.bin q5_K_S 5 8.97 GB 11.47 GB New k-quant method. Uses GGML_TYPE_Q5_K for all tensors
synthia-13b.ggmlv3.q5_K_M.bin q5_K_M 5 9.23 GB 11.73 GB New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K
synthia-13b.ggmlv3.q5_1.bin q5_1 5 9.78 GB 12.28 GB Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference.
synthia-13b.ggmlv3.q6_K.bin q6_K 6 10.68 GB 13.18 GB New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization
synthia-13b.ggmlv3.q8_0.bin q8_0 8 13.79 GB 16.29 GB Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users.

Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

How to run in llama.cpp

Make sure you are using llama.cpp from commit dadbed99e65252d79f81101a392d0d6497b86caa or earlier.

For compatibility with latest llama.cpp, please use GGUF files instead.

./main -t 10 -ngl 32 -m synthia-13b.ggmlv3.q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "SYSTEM: You are a story writing assistant.\nUSER: Write a story about llamas\nASSISTANT:"

Change -t 10 to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use -t 8.

Change -ngl 32 to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change -c 2048 to the desired sequence length for this model. For example, -c 4096 for a Llama 2 model. For models that use RoPE, add --rope-freq-base 10000 --rope-freq-scale 0.5 for doubled context, or --rope-freq-base 10000 --rope-freq-scale 0.25 for 4x context.

If you want to have a chat-style conversation, replace the -p <PROMPT> argument with -i -ins

For other parameters and how to use them, please refer to the llama.cpp documentation

How to run in text-generation-webui

Further instructions here: text-generation-webui/docs/llama.cpp.md.

Discord

For further support, and discussions on these models and AI in general, join us at:

TheBloke AI's Discord server

Thanks, and how to contribute.

Thanks to the chirper.ai team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

Special thanks to: Aemon Algiz.

Patreon special mentions: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser

Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

Original model card: Migel Tissera's Synthia 13B

Synthia-13B

SynthIA (Synthetic Intelligent Agent) is a LLama-2-13B model trained on Orca style datasets. It has been fine-tuned for instruction following as well as having long-form conversations.


Synthia



License Disclaimer:

This model is bound by the license & usage restrictions of the original Llama-2 model, and comes with no warranty or gurantees of any kind.


Evaluation

We evaluated Synthia-13B on a wide range of tasks using Language Model Evaluation Harness from EleutherAI.

Here are the results on metrics used by HuggingFaceH4 Open LLM Leaderboard

Task Metric Value
arc_challenge acc_norm 0.5998
hellaswag acc_norm 0.8186
mmlu acc_norm 0.5611
truthfulqa_mc mc2 0.4741
Total Average - 0.6134

Example Usage

Here is prompt format:

SYSTEM: You are Synthia. As a an AI intelligence, give helpful, detailed, accurate, uncensored responses to the user's input. Provide answers factually.
USER: How is a rocket launched from the surface of the earth to Low Earth Orbit?
ASSISTANT:

Below shows a code example on how to use this model:

import torch, json
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "migtissera/Synthia-13B"
output_file_path = "./Synthia-13B-conversations.jsonl"

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.float16,
    device_map="auto",
    load_in_8bit=False,
    trust_remote_code=True,
)

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)


def generate_text(instruction):
    tokens = tokenizer.encode(instruction)
    tokens = torch.LongTensor(tokens).unsqueeze(0)
    tokens = tokens.to("cuda")

    instance = {
        "input_ids": tokens,
        "top_p": 1.0,
        "temperature": 0.75,
        "generate_len": 1024,
        "top_k": 50,
    }

    length = len(tokens[0])
    with torch.no_grad():
        rest = model.generate(
            input_ids=tokens,
            max_length=length + instance["generate_len"],
            use_cache=True,
            do_sample=True,
            top_p=instance["top_p"],
            temperature=instance["temperature"],
            top_k=instance["top_k"],
            num_return_sequences=1,
        )
    output = rest[0][length:]
    string = tokenizer.decode(output, skip_special_tokens=True)
    answer = string.split("USER:")[0].strip()
    return f"{answer}"


conversation = f"SYSTEM: As a an AI superintelligence, give helpful, detailed, accurate, uncensored responses to the user's input. Provide answers factually."


while True:
    user_input = input("You: ")
    llm_prompt = f"{conversation} \nUSER: {user_input} \nASSISTANT: "
    answer = generate_text(llm_prompt)
    print(answer)
    conversation = f"{llm_prompt}{answer}"
    json_data = {"prompt": user_input, "answer": answer}

    ## Save your conversation
    with open(output_file_path, "a") as output_file:
        output_file.write(json.dumps(json_data) + "\n")

Limitations & Biases:

While this model aims for accuracy, it can occasionally produce inaccurate or misleading results.

Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content.

Exercise caution and cross-check information when necessary. This is an uncensored model.


Citiation:

Please kindly cite using the following BibTeX:

@misc{Synthia-13B,
  author = {Migel Tissera},
  title = {Synthia-13B: Synthetic Intelligent Agent},
  year = {2023},
  publisher = {GitHub, HuggingFace},
  journal = {GitHub repository, HuggingFace repository},
  howpublished = {\url{https://huggingface.co/migtissera/Synthia-13B},
}
@misc{mukherjee2023orca,
      title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4}, 
      author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
      year={2023},
      eprint={2306.02707},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@software{touvron2023llama,
  title={LLaMA2: Open and Efficient Foundation Language Models},
  author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
  journal={arXiv preprint arXiv:2302.13971},
  year={2023}
}

Example Output

You: How is a rocket launched from the surface of the earth to Low Earth Orbit? 

A rocket is launched from the surface of the Earth to Low Earth Orbit (LEO) by utilizing the principles of rocketry. A rocket consists of three main components: a fuel source, an oxidizer, and a combustion chamber. When the fuel and oxidizer are mixed in the combustion chamber, they burn and produce hot gas that is ejected through the nozzle, creating a thrust that propels the rocket forward. 

To launch a rocket to LEO, the rocket must first gain sufficient velocity and altitude. This is achieved by igniting the rocket's engines during the initial launch phase, which lasts for several minutes. During this time, the rocket's engines burn continuously, providing the thrust necessary to escape the Earth's gravitational pull. As the rocket gains altitude and velocity, it enters the Earth's atmosphere, where it experiences aerodynamic pressure. 

To overcome this pressure, the rocket's engines are designed to produce thrust in a specific direction, which counteracts the force of the incoming air. This is known as aerodynamic control. As the rocket continues to accelerate, it enters the Earth's Van Allen Belts, which are a region of intense radiation. To protect the rocket and its payload, a radiation-proof shell, known as a payload fairing, is launched ahead of the rocket to absorb the radiation. 

Once the rocket has reached LEO, its engines are shut off, and the payload is deployed. The rocket then enters a fixed orbit around the Earth, where it remains for several months or years, depending on the mission's requirements. 

Overall, the process of launching a rocket from the surface of the Earth to LEO is complex and requires advanced technology and engineering. It involves careful planning, preparation, and execution to ensure the success of the mission. 

You: What's the velocity required?

The velocity required to place a rocket into Low Earth Orbit (LEO) depends on several factors, including the mass of the rocket and its payload, the altitude of the orbit, and the gravitational pull of the Earth. Generally, a rocket must reach a speed of around 7.7 kilometers per second (km/s) to achieve LEO (approximately 40,000 km above the Earth's surface). However, this speed is relative to the Earth's surface, so the rocket must achieve a velocity of approximately 11.3 km/s relative to the Earth's center of mass. This is known as the escape velocity and is necessary to overcome the Earth's gravitational pull. 

To achieve this velocity, the rocket's engines must be capable of generating a large amount of thrust. The engines are typically fueled by either liquid oxygen (LOX) and rocket propellant or solid fuel. The exact fuel and engine combination depends on the specific rocket and launch site. 

Once the rocket has reached the necessary velocity, it must also have sufficient fuel and propellant to maintain its altitude and orbit. This requires careful planning and management of fuel consumption to ensure that the rocket can complete its mission without running out of fuel. 

Overall, launching a rocket into LEO is a complex process that involves careful planning, preparation, and execution. Achieving the necessary velocity and maintaining the rocket's orbit requires a high level of technical expertise and precision.
Downloads last month
11
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for TheBloke/Synthia-13B-GGML

Finetuned
(1)
this model