|
--- |
|
license: mit |
|
base_model: facebook/esm2_t12_35M_UR50D |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: esm2_t12_35M_UR50D-finetuned-SO2F |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# esm2_t12_35M_UR50D-finetuned-SO2F |
|
|
|
This model is a fine-tuned version of [facebook/esm2_t12_35M_UR50D](https://huggingface.co/facebook/esm2_t12_35M_UR50D) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6696 |
|
- Accuracy: 0.7332 |
|
- Precision: 0.1614 |
|
- Recall: 0.4329 |
|
- F1: 0.2351 |
|
- Auc: 0.5987 |
|
- Mcc: 0.1329 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc | Mcc | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|:------:| |
|
| No log | 1.0 | 108 | 0.6843 | 0.7039 | 0.1240 | 0.3507 | 0.1832 | 0.5458 | 0.0605 | |
|
| No log | 2.0 | 216 | 0.6733 | 0.7257 | 0.1561 | 0.4301 | 0.2290 | 0.5934 | 0.1245 | |
|
| No log | 3.0 | 324 | 0.6696 | 0.7332 | 0.1614 | 0.4329 | 0.2351 | 0.5987 | 0.1329 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|