multibert_dataaugmentation

This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7138
  • Precisions: 0.8609
  • Recall: 0.8356
  • F-measure: 0.8464
  • Accuracy: 0.8989

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.5775 1.0 285 0.4827 0.7847 0.7040 0.7340 0.8509
0.2623 2.0 570 0.5829 0.8035 0.7359 0.7591 0.8613
0.1503 3.0 855 0.5609 0.7946 0.8083 0.7917 0.8804
0.088 4.0 1140 0.5481 0.8406 0.7997 0.8170 0.8860
0.0592 5.0 1425 0.6359 0.8207 0.8210 0.8120 0.8828
0.0414 6.0 1710 0.6589 0.8313 0.8171 0.8198 0.8843
0.0271 7.0 1995 0.7117 0.8689 0.7882 0.8216 0.8936
0.0179 8.0 2280 0.7138 0.8609 0.8356 0.8464 0.8989
0.0121 9.0 2565 0.7289 0.8456 0.8128 0.8278 0.8946
0.0081 10.0 2850 0.7603 0.8344 0.8223 0.8278 0.8956
0.0058 11.0 3135 0.8126 0.8576 0.8107 0.8322 0.8942
0.0041 12.0 3420 0.8004 0.8582 0.8267 0.8415 0.8955
0.0031 13.0 3705 0.7936 0.8599 0.8275 0.8426 0.8961
0.0028 14.0 3990 0.8076 0.8602 0.8226 0.8401 0.8966

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Tommert25/multibert_dataaugmentation

Finetuned
(1631)
this model