hilco's picture
Finished training.
b9c6410 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - parquet
  - text-classification
datasets:
  - tweet_eval
metrics:
  - accuracy
base_model: bert-base-uncased
model-index:
  - name: bert-base-uncased-finetuned-lora-tweet_eval_emotion
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: tweet_eval
          type: tweet_eval
          config: emotion
          split: validation
          args: emotion
        metrics:
          - type: accuracy
            value: 0.7406417112299465
            name: accuracy

bert-base-uncased-finetuned-lora-tweet_eval_emotion

This model is a fine-tuned version of bert-base-uncased on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • accuracy: 0.7406

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

accuracy train_loss epoch
0.3048 None 0
0.4412 1.2579 0
0.7193 1.1064 1
0.7406 0.8318 2
0.7406 0.7559 3

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.16.1
  • Tokenizers 0.15.2