|
--- |
|
library_name: transformers |
|
tags: |
|
- generated_from_trainer |
|
- llama-cpp |
|
- gguf-my-repo |
|
license: apache-2.0 |
|
language: |
|
- en |
|
base_model: EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0 |
|
datasets: |
|
- anthracite-org/kalo-opus-instruct-22k-no-refusal |
|
- Nopm/Opus_WritingStruct |
|
- Gryphe/Sonnet3.5-SlimOrcaDedupCleaned |
|
- Gryphe/Sonnet3.5-Charcard-Roleplay |
|
- Gryphe/ChatGPT-4o-Writing-Prompts |
|
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned |
|
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned |
|
- nothingiisreal/Reddit-Dirty-And-WritingPrompts |
|
- allura-org/Celeste-1.x-data-mixture |
|
- cognitivecomputations/dolphin-2.9.3 |
|
model-index: |
|
- name: EVA-Qwen2.5-1.5B-FFT-v0.0 |
|
results: [] |
|
--- |
|
|
|
# Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q4_K_S-GGUF |
|
This model was converted to GGUF format from [`EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0`](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0) for more details on the model. |
|
|
|
--- |
|
Model details: |
|
- |
|
|
|
A small-scale RP/storywriting specialist model, full-parameter |
|
finetune of Qwen2.5-1.5B on mixture of synthetic and natural data. |
|
|
|
It uses Celeste 70B 0.1 data mixture, greatly expanding it to improve |
|
versatility, creativity and "flavor" of the resulting model. |
|
|
|
Unlike EVA-D 1.5B v0.0, this model was created without using |
|
DistillKit, and unlike other versions of EVA, Spectrum wasn't used |
|
either, since layer freezing is inefficient at small scale. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Training data: |
|
|
|
|
|
|
|
Celeste 70B 0.1 data mixture minus Opus Instruct subset. See that model's card for details. |
|
Kalomaze's Opus_Instruct_25k dataset, filtered for refusals. |
|
A subset (1k rows) of ChatGPT-4o-WritingPrompts by Gryphe |
|
A subset (2k rows) of Sonnet3.5-Charcards-Roleplay by Gryphe |
|
Synthstruct and SynthRP datasets by Epiculous |
|
A subset from Dolphin-2.9.3, including filtered version of not_samantha and a small subset of systemchat. |
|
|
|
|
|
|
|
Training time and hardware: |
|
|
|
|
|
|
|
9 hours on 4x3090Ti |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model was created by Kearm, Auri and Cahvay. |
|
|
|
|
|
Special thanks: |
|
to Cahvay for his work on investigating and reprocessing the |
|
corrupted dataset, removing the single biggest source of data poisoning. |
|
to Gryphe, Lemmy, Kalomaze, Nopm, Epiculous and CognitiveComputations for the data |
|
and to Allura-org for support, feedback, beta-testing and doing quality control of EVA models. |
|
|
|
|
|
|
|
|
|
|
|
See axolotl config |
|
|
|
|
|
axolotl version: 0.4.1 |
|
|
|
|
|
base_model: /media/kearm/Disk_2/HF_FAST_MoE_Fodder/Qwen2.5-1.5B |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_rope: true |
|
liger_rms_norm: true |
|
liger_swiglu: true |
|
liger_fused_linear_cross_entropy: true |
|
|
|
# plugins: |
|
# - axolotl.integrations.spectrum.SpectrumPlugin |
|
|
|
# spectrum_top_fraction: 0.5 |
|
# # Optional if using a pre-scanned model as your base_model. Useful if using a model mirror |
|
# spectrum_model_name: Qwen/Qwen2.5-32B |
|
|
|
datasets: |
|
- path: datasets/Celeste_Filtered_utf8fix.jsonl |
|
type: sharegpt |
|
- path: datasets/deduped_not_samantha_norefusals.jsonl |
|
type: sharegpt |
|
- path: datasets/deduped_SynthRP-Gens_processed_ShareGPT_converted_cleaned.jsonl |
|
type: sharegpt |
|
- path: datasets/deduped_Synthstruct-Gens_processed_sharegpt_converted_cleaned.jsonl |
|
type: sharegpt |
|
- path: datasets/Gryphe-4o-WP-filtered-sharegpt_utf8fix.jsonl |
|
type: sharegpt |
|
- path: datasets/Sonnet3-5-charcard-names-filtered-sharegpt_utf8fix.jsonl |
|
type: sharegpt |
|
- path: datasets/SystemChat_subset_filtered_sharegpt_utf8fix.jsonl |
|
type: sharegpt |
|
- path: datasets/S2.jsonl |
|
type: sharegpt |
|
- path: datasets/Turing.jsonl |
|
type: sharegpt |
|
|
|
chat_template: chatml |
|
shuffle_merged_datasets: true |
|
val_set_size: 0.05 |
|
output_dir: EVA-Qwen2.5-1.5B-FFT-v0.0 |
|
|
|
sequence_len: 10240 |
|
sample_packing: true |
|
eval_sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
# adapter: qlora |
|
# lora_model_dir: |
|
# lora_r: 64 |
|
# lora_alpha: 128 |
|
# lora_dropout: 0.05 |
|
# lora_target_linear: true |
|
# peft_use_dora: true |
|
|
|
wandb_project: EVA-Qwen2.5-1.5B-FFT-v0.0 |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: Unit-00 |
|
wandb_log_model: |
|
|
|
gradient_accumulation_steps: 8 |
|
micro_batch_size: 1 |
|
num_epochs: 3 |
|
optimizer: paged_adamw_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.000005 |
|
max_grad_norm: 1.5 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: "unsloth" |
|
gradient_checkpointing_kwargs: |
|
use_reentrant: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 20 |
|
evals_per_epoch: 4 |
|
saves_per_epoch: 4 |
|
save_safetensors: true |
|
save_total_limit: 8 |
|
hub_model_id: |
|
hub_strategy: |
|
debug: |
|
deepspeed: deepspeed_configs/zero3_bf16.json |
|
weight_decay: 0.15 |
|
# fsdp: |
|
# - full_shard |
|
# - auto_wrap |
|
# fsdp_config: |
|
# fsdp_limit_all_gathers: true |
|
# fsdp_sync_module_states: false |
|
# fsdp_offload_params: true |
|
# fsdp_cpu_ram_efficient_loading: true |
|
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP |
|
# fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer |
|
# fsdp_activation_checkpointing: true |
|
# fsdp_state_dict_type: SHARDED_STATE_DICT # Changed from FULL_STATE_DICT |
|
# fsdp_sharding_strategy: FULL_SHARD |
|
# fsdp_forward_prefetch: false # Added |
|
# fsdp_backward_prefetch: "BACKWARD_PRE" # Added |
|
# fsdp_backward_prefetch_limit: 1 # Added |
|
# fsdp_mixed_precision: BF16 # Added |
|
|
|
--- |
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q4_K_S-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q4_k_s.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q4_K_S-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q4_k_s.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q4_K_S-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q4_k_s.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q4_K_S-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q4_k_s.gguf -c 2048 |
|
``` |
|
|