Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q5_K_M-GGUF

This model was converted to GGUF format from EVA-UNIT-01/EVA-Qwen2.5-1.5B-v0.0 using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.


Model details:

A small-scale RP/storywriting specialist model, full-parameter finetune of Qwen2.5-1.5B on mixture of synthetic and natural data.

It uses Celeste 70B 0.1 data mixture, greatly expanding it to improve versatility, creativity and "flavor" of the resulting model.

Unlike EVA-D 1.5B v0.0, this model was created without using DistillKit, and unlike other versions of EVA, Spectrum wasn't used either, since layer freezing is inefficient at small scale.

Training data:

Celeste 70B 0.1 data mixture minus Opus Instruct subset. See that model's card for details. Kalomaze's Opus_Instruct_25k dataset, filtered for refusals. A subset (1k rows) of ChatGPT-4o-WritingPrompts by Gryphe A subset (2k rows) of Sonnet3.5-Charcards-Roleplay by Gryphe Synthstruct and SynthRP datasets by Epiculous A subset from Dolphin-2.9.3, including filtered version of not_samantha and a small subset of systemchat.

 Training time and hardware:


  

9 hours on 4x3090Ti

Model was created by Kearm, Auri and Cahvay.

Special thanks: to Cahvay for his work on investigating and reprocessing the corrupted dataset, removing the single biggest source of data poisoning. to Gryphe, Lemmy, Kalomaze, Nopm, Epiculous and CognitiveComputations for the data and to Allura-org for support, feedback, beta-testing and doing quality control of EVA models.

See axolotl config

axolotl version: 0.4.1

base_model: /media/kearm/Disk_2/HF_FAST_MoE_Fodder/Qwen2.5-1.5B

load_in_8bit: false load_in_4bit: false strict: false

plugins:

  • axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_swiglu: true liger_fused_linear_cross_entropy: true

plugins:

- axolotl.integrations.spectrum.SpectrumPlugin

spectrum_top_fraction: 0.5

# Optional if using a pre-scanned model as your base_model. Useful if using a model mirror

spectrum_model_name: Qwen/Qwen2.5-32B

datasets:

  • path: datasets/Celeste_Filtered_utf8fix.jsonl type: sharegpt
  • path: datasets/deduped_not_samantha_norefusals.jsonl type: sharegpt
  • path: datasets/deduped_SynthRP-Gens_processed_ShareGPT_converted_cleaned.jsonl type: sharegpt
  • path: datasets/deduped_Synthstruct-Gens_processed_sharegpt_converted_cleaned.jsonl type: sharegpt
  • path: datasets/Gryphe-4o-WP-filtered-sharegpt_utf8fix.jsonl type: sharegpt
  • path: datasets/Sonnet3-5-charcard-names-filtered-sharegpt_utf8fix.jsonl type: sharegpt
  • path: datasets/SystemChat_subset_filtered_sharegpt_utf8fix.jsonl type: sharegpt
  • path: datasets/S2.jsonl type: sharegpt
  • path: datasets/Turing.jsonl type: sharegpt

chat_template: chatml shuffle_merged_datasets: true val_set_size: 0.05 output_dir: EVA-Qwen2.5-1.5B-FFT-v0.0

sequence_len: 10240 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true

adapter: qlora

lora_model_dir:

lora_r: 64

lora_alpha: 128

lora_dropout: 0.05

lora_target_linear: true

peft_use_dora: true

wandb_project: EVA-Qwen2.5-1.5B-FFT-v0.0 wandb_entity: wandb_watch: wandb_name: Unit-00 wandb_log_model:

gradient_accumulation_steps: 8 micro_batch_size: 1 num_epochs: 3 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.000005 max_grad_norm: 1.5

train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false

gradient_checkpointing: "unsloth" gradient_checkpointing_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true

warmup_steps: 20 evals_per_epoch: 4 saves_per_epoch: 4 save_safetensors: true save_total_limit: 8 hub_model_id: hub_strategy: debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.15

fsdp:

- full_shard

- auto_wrap

fsdp_config:

fsdp_limit_all_gathers: true

fsdp_sync_module_states: false

fsdp_offload_params: true

fsdp_cpu_ram_efficient_loading: true

fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP

fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer

fsdp_activation_checkpointing: true

fsdp_state_dict_type: SHARDED_STATE_DICT # Changed from FULL_STATE_DICT

fsdp_sharding_strategy: FULL_SHARD

fsdp_forward_prefetch: false # Added

fsdp_backward_prefetch: "BACKWARD_PRE" # Added

fsdp_backward_prefetch_limit: 1 # Added

fsdp_mixed_precision: BF16 # Added


Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q5_K_M-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q5_k_m.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q5_K_M-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q5_k_m.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q5_K_M-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q5_k_m.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q5_K_M-GGUF --hf-file eva-qwen2.5-1.5b-v0.0-q5_k_m.gguf -c 2048
Downloads last month
19
GGUF
Model size
1.54B params
Architecture
qwen2

5-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q5_K_M-GGUF

Base model

Qwen/Qwen2.5-1.5B
Quantized
(10)
this model

Datasets used to train Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q5_K_M-GGUF

Collections including Triangle104/EVA-Qwen2.5-1.5B-v0.0-Q5_K_M-GGUF