Triangle104's picture
Update README.md
190690d verified
|
raw
history blame
6.35 kB
metadata
base_model: lemon07r/Gemma-2-Ataraxy-v2-9B
library_name: transformers
tags:
  - mergekit
  - merge
  - llama-cpp
  - gguf-my-repo
model-index:
  - name: Gemma-2-Ataraxy-v2-9B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 21.36
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 39.8
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0.83
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 12.3
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 4.88
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 35.79
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lemon07r/Gemma-2-Ataraxy-v2-9B
          name: Open LLM Leaderboard

Triangle104/Gemma-2-Ataraxy-v2-9B-Q6_K-GGUF

This model was converted to GGUF format from lemon07r/Gemma-2-Ataraxy-v2-9B using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.


Model details:

Gemma 2 Ataraxy v2 9B

Finally, after much testing, a sucessor to the first Gemma 2 Ataraxy 9B. Same kind of recipe, using the same principles, same concept as the last Ataraxy. It's not quite a better overall model, v1 is more well rounded, v2 is a little better at writing but has a little more slop and some other issues. consider this a sidegrade.

Ataraxy GGUF / EXL2 Quants

Bartowski quants (imatrix): https://huggingface.co/bartowski/Gemma-2-Ataraxy-v2-9B-GGUF

Mradermacher quants (static): https://huggingface.co/mradermacher/Gemma-2-Ataraxy-v2-9B-GGUF

Mradermacher quants (imatrix): https://huggingface.co/mradermacher/Gemma-2-Ataraxy-v2-9B-i1-GGUF

Bartowski and mradermacher use different calibration data for their imatrix quants I believe, and the static quant of course uses none. Pick your poison.

More coming soon. Format

Use Gemma 2 format. Merge Details Merge Method

This model was merged using the SLERP merge method. Models Merged

This is a merge of pre-trained language models created using mergekit.

The following models were included in the merge:

ifable/gemma-2-Ifable-9B jsgreenawalt/gemma-2-9B-it-advanced-v2.1

Configuration

The following YAML configuration was used to produce this model:

base_model: ifable/gemma-2-Ifable-9B dtype: bfloat16 merge_method: slerp parameters: t:

filter: self_attn value: [0.0, 0.5, 0.3, 0.7, 1.0]
filter: mlp value: [1.0, 0.5, 0.7, 0.3, 0.0]
value: 0.5 slices:
sources:
    layer_range: [0, 42] model: jsgreenawalt/gemma-2-9B-it-advanced-v2.1
    layer_range: [0, 42] model: ifable/gemma-2-Ifable-9B

Open LLM Leaderboard Evaluation Results

Detailed results can be found here Metric Value Avg. 19.16 IFEval (0-Shot) 21.36 BBH (3-Shot) 39.80 MATH Lvl 5 (4-Shot) 0.83 GPQA (0-shot) 12.30 MuSR (0-shot) 4.88 MMLU-PRO (5-shot) 35.79

Second highest ranked open weight model in EQ-Bench.


Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo Triangle104/Gemma-2-Ataraxy-v2-9B-Q6_K-GGUF --hf-file gemma-2-ataraxy-v2-9b-q6_k.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo Triangle104/Gemma-2-Ataraxy-v2-9B-Q6_K-GGUF --hf-file gemma-2-ataraxy-v2-9b-q6_k.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Triangle104/Gemma-2-Ataraxy-v2-9B-Q6_K-GGUF --hf-file gemma-2-ataraxy-v2-9b-q6_k.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Triangle104/Gemma-2-Ataraxy-v2-9B-Q6_K-GGUF --hf-file gemma-2-ataraxy-v2-9b-q6_k.gguf -c 2048