Transformers
GGUF
mergekit
Merge
shining-valiant
shining-valiant-2
enigma
plum
plumcode
code
valiant
valiant-labs
llama
llama-3.1
llama-3.1-instruct
llama-3.1-instruct-8b
llama-3
llama-3-instruct
llama-3-instruct-8b
8b
code-instruct
python
science
physics
biology
chemistry
compsci
computer-science
engineering
technical
conversational
chat
instruct
llama-cpp
gguf-my-repo
Eval Results
Inference Endpoints
metadata
library_name: transformers
license: llama3.1
tags:
- mergekit
- merge
- shining-valiant
- shining-valiant-2
- enigma
- plum
- plumcode
- code
- valiant
- valiant-labs
- llama
- llama-3.1
- llama-3.1-instruct
- llama-3.1-instruct-8b
- llama-3
- llama-3-instruct
- llama-3-instruct-8b
- 8b
- code-instruct
- python
- science
- physics
- biology
- chemistry
- compsci
- computer-science
- engineering
- technical
- conversational
- chat
- instruct
- llama-cpp
- gguf-my-repo
base_model: sequelbox/Llama3.1-8B-PlumCode
model-index:
- name: Llama3.1-8B-PlumCode
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-Shot)
type: Winogrande
args:
num_few_shot: 5
metrics:
- type: acc
value: 73.16
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 20.45
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumCode
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 8.5
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumCode
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 2.42
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumCode
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.47
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumCode
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.97
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumCode
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 14.84
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-PlumCode
name: Open LLM Leaderboard
Triangle104/Llama3.1-8B-PlumCode-Q4_K_M-GGUF
This model was converted to GGUF format from sequelbox/Llama3.1-8B-PlumCode
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Llama3.1-8B-PlumCode-Q4_K_M-GGUF --hf-file llama3.1-8b-plumcode-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Llama3.1-8B-PlumCode-Q4_K_M-GGUF --hf-file llama3.1-8b-plumcode-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Llama3.1-8B-PlumCode-Q4_K_M-GGUF --hf-file llama3.1-8b-plumcode-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Llama3.1-8B-PlumCode-Q4_K_M-GGUF --hf-file llama3.1-8b-plumcode-q4_k_m.gguf -c 2048