Triangle104/MS-Schisandra-22B-v0.3-Q5_K_M-GGUF
This model was converted to GGUF format from Nohobby/MS-Schisandra-22B-v0.3
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Merge Details
Merging steps
Karasik-v0.3
models:
- model: Mistral-Small-22B-ArliAI-RPMax-v1.1 parameters: weight: [0.2, 0.3, 0.2, 0.3, 0.2] density: [0.45, 0.55, 0.45, 0.55, 0.45]
- model: Mistral-Small-NovusKyver parameters: weight: [0.01768, -0.01675, 0.01285, -0.01696, 0.01421] density: [0.6, 0.4, 0.5, 0.4, 0.6]
- model: MiS-Firefly-v0.2-22B parameters: weight: [0.208, 0.139, 0.139, 0.139, 0.208] density: [0.7]
- model: magnum-v4-22b parameters: weight: [0.33] density: [0.45, 0.55, 0.45, 0.55, 0.45] merge_method: della_linear base_model: Mistral-Small-22B-ArliAI-RPMax-v1.1 parameters: epsilon: 0.05 lambda: 1.05 int8_mask: true rescale: true normalize: false dtype: bfloat16 tokenizer_source: base
SchisandraVA3
(Config taken from here)
merge_method: della_linear dtype: bfloat16 parameters: normalize: true int8_mask: true tokenizer_source: base base_model: Cydonia-22B-v1.3 models: - model: Karasik03 parameters: density: 0.55 weight: 1 - model: Pantheon-RP-Pure-1.6.2-22b-Small parameters: density: 0.55 weight: 1 - model: ChatWaifu_v2.0_22B parameters: density: 0.55 weight: 1 - model: MS-Meadowlark-Alt-22B parameters: density: 0.55 weight: 1 - model: SorcererLM-22B parameters: density: 0.55 weight: 1
Schisandra-v0.3
dtype: bfloat16 tokenizer_source: base merge_method: della_linear parameters: density: 0.5 base_model: SchisandraVA3 models:
- model: unsloth/Mistral-Small-Instruct-2409 parameters: weight: - filter: v_proj value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0] - filter: o_proj value: [1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1] - filter: up_proj value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] - filter: gate_proj value: [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0] - filter: down_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - value: 0
- model: SchisandraVA3 parameters: weight: - filter: v_proj value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1] - filter: o_proj value: [0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0] - filter: up_proj value: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] - filter: gate_proj value: [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1] - filter: down_proj value: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] - value: 1
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/MS-Schisandra-22B-v0.3-Q5_K_M-GGUF --hf-file ms-schisandra-22b-v0.3-q5_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/MS-Schisandra-22B-v0.3-Q5_K_M-GGUF --hf-file ms-schisandra-22b-v0.3-q5_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/MS-Schisandra-22B-v0.3-Q5_K_M-GGUF --hf-file ms-schisandra-22b-v0.3-q5_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/MS-Schisandra-22B-v0.3-Q5_K_M-GGUF --hf-file ms-schisandra-22b-v0.3-q5_k_m.gguf -c 2048
- Downloads last month
- 2
Model tree for Triangle104/MS-Schisandra-22B-v0.3-Q5_K_M-GGUF
Base model
Nohobby/MS-Schisandra-22B-v0.3