Triangle104's picture
Update README.md
af6e1c2 verified
|
raw
history blame
2.75 kB
---
base_model: nbeerbower/Mahou-1.5-mistral-nemo-12B-lorablated
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
---
# Triangle104/Mahou-1.5-mistral-nemo-12B-lorablated-Q4_K_M-GGUF
This model was converted to GGUF format from [`nbeerbower/Mahou-1.5-mistral-nemo-12B-lorablated`](https://huggingface.co/nbeerbower/Mahou-1.5-mistral-nemo-12B-lorablated) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/nbeerbower/Mahou-1.5-mistral-nemo-12B-lorablated) for more details on the model.
---
Model details:
-
This model was merged using the task arithmetic merge method using flammenai/Mahou-1.5-mistral-nemo-12B + nbeerbower/Mistral-Nemo-12B-abliterated-LORA as a base.
Models Merged
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
base_model: flammenai/Mahou-1.5-mistral-nemo-12B+nbeerbower/Mistral-Nemo-12B-abliterated-LORA
dtype: bfloat16
merge_method: task_arithmetic
parameters:
normalize: false
slices:
- sources:
- layer_range: [0, 32]
model: flammenai/Mahou-1.5-mistral-nemo-12B+nbeerbower/Mistral-Nemo-12B-abliterated-LORA
parameters:
weight: 1.0
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Mahou-1.5-mistral-nemo-12B-lorablated-Q4_K_M-GGUF --hf-file mahou-1.5-mistral-nemo-12b-lorablated-q4_k_m.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Mahou-1.5-mistral-nemo-12B-lorablated-Q4_K_M-GGUF --hf-file mahou-1.5-mistral-nemo-12b-lorablated-q4_k_m.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Mahou-1.5-mistral-nemo-12B-lorablated-Q4_K_M-GGUF --hf-file mahou-1.5-mistral-nemo-12b-lorablated-q4_k_m.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Mahou-1.5-mistral-nemo-12B-lorablated-Q4_K_M-GGUF --hf-file mahou-1.5-mistral-nemo-12b-lorablated-q4_k_m.gguf -c 2048
```