Triangle104's picture
Update README.md
e8a919f verified
|
raw
history blame
4.84 kB
metadata
license: apache-2.0
library_name: transformers
base_model: nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
tags:
  - llama-cpp
  - gguf-my-repo
model-index:
  - name: Qwen2.5-Gutenberg-Doppel-14B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 80.91
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 48.24
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 11.07
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 10.02
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 43.57
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=nbeerbower/Qwen2.5-Gutenberg-Doppel-14B
          name: Open LLM Leaderboard

Triangle104/Qwen2.5-Gutenberg-Doppel-14B-Q4_K_S-GGUF

This model was converted to GGUF format from nbeerbower/Qwen2.5-Gutenberg-Doppel-14B using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.


Model details:

Qwen/Qwen2.5-14B-Instruct finetuned on jondurbin/gutenberg-dpo-v0.1 and nbeerbower/gutenberg2-dpo.

Method ORPO tuned with 4x A40 for 3 epochs.

Thank you @ParasiticRogue for sponsoring.


Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo Triangle104/Qwen2.5-Gutenberg-Doppel-14B-Q4_K_S-GGUF --hf-file qwen2.5-gutenberg-doppel-14b-q4_k_s.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo Triangle104/Qwen2.5-Gutenberg-Doppel-14B-Q4_K_S-GGUF --hf-file qwen2.5-gutenberg-doppel-14b-q4_k_s.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Triangle104/Qwen2.5-Gutenberg-Doppel-14B-Q4_K_S-GGUF --hf-file qwen2.5-gutenberg-doppel-14b-q4_k_s.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Triangle104/Qwen2.5-Gutenberg-Doppel-14B-Q4_K_S-GGUF --hf-file qwen2.5-gutenberg-doppel-14b-q4_k_s.gguf -c 2048