metadata
language:
- hi
license: apache-2.0
tags:
- ar-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: Whisper Small Ar - AxAI
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: ar
split: None
args: 'config: ar, split: test[:10%]'
metrics:
- type: wer
value: 116.16948508455253
name: Wer
Whisper Small Ar - AxAI
This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.8021
- Wer: 116.1695
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0331 | 4.15 | 1000 | 0.5950 | 130.9519 |
0.0031 | 8.3 | 2000 | 0.7200 | 114.9724 |
0.0006 | 12.45 | 3000 | 0.7821 | 116.3405 |
0.0006 | 16.6 | 4000 | 0.8021 | 116.1695 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2