File size: 6,967 Bytes
85679c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
---
language:
- en
- de
- it
- fr
- da
- sv
- fi
- 'no'
---
![Kraken](https://vago-solutions.de/wp-content/uploads/2024/05/Kraken_Pic-multi.png "Kraken-Multilingual")
## Overview
The Kraken-Multilingual model and Architecture **Kraken** is a **joint effort** between **Cognitive Computations**, **VAGO Solutions** and **Hyperspace.ai.**
Created by **Fernando Fernandes Neto**, **David Golchinfar**, **Lucas Atkins** and **Eric Hartford**
The Kraken-Multilingual model supports German, English, Italian, French, Swedish, Finnish, Danish and Norwegian language.
The Kraken Architecture is a sophisticated machine learning framework designed for dynamic text generation tasks. It utilizes the Hugging Face transformers library to orchestrate multiple causal language models (CLMs) and intelligently route input through different models based on the context and content of the input text. The architecture is powered by a custom configuration class (KrakenConfig) that facilitates the integration and management of various components such as tokenizers, models, and routing mechanisms.
## Features
Dynamic Model Routing: Uses a sequence classification model to route inputs to the most suitable language model based on the input's characteristics.
Multiple Language Models: Supports integration of various pre-trained causal language models, allowing for flexible, context-appropriate responses.
Customizable Templates: Includes support for input formatting using predefined templates, enhancing the model's adaptability to different conversational contexts.
Extensible Configuration: Leverages a custom configuration setup that can be easily extended and adapted for various use cases involving causal language modeling.
## Selected Models as Experts:
```
"German/English Expert": "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
"Function Italian Expert": "mii-community/zefiro-7b-dpo-ITA",
"French Expert": "paulml/Hermes-2-Pro-French",
"Scandinavian Expert": "norallm/normistral-7b-warm-instruct",
```
**How to load and call Kraken-Multilingual model :**
```
from transformers import AutoConfig, AutoModelForCausalLM
from configuration_kraken import KrakenConfig
from modeling_kraken import KrakenForCausalLM
AutoConfig.register("kraken", KrakenConfig)
AutoModelForCausalLM.register(KrakenConfig, KrakenForCausalLM)
device = "cuda:0" ## Setup "cuda:0" if NVIDIA, "mps" if on Mac
# Load the model and config:
config = AutoConfig.from_pretrained("./kraken_model")
model = AutoModelForCausalLM.from_pretrained("./kraken_model", config=config, trust_remote_code=True)
```
# Call the German expert:
```
messages = [
{'role': 'system', 'content': 'Du bist ein freundlicher und hilfreicher deutscher KI-Assistent'},
{'role': 'user', 'content': "Erzähle mir eine kurze Gute Nacht Geschichte in 2 Sätzen."}
]
tokenizer = model.tokenizer
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda:0")
output_ids = model.generate(input_ids, max_length=150)
print(model.expert_tokenizer(text=input_text).decode(output_ids[0], skip_special_tokens=True))
```
# Call the English expert:
```
messages = [
{'role': 'system', 'content': '"You are a helpful AI Assistant'},
{'role': 'user', 'content': "Find the mass percentage of Ba in BaO"}
]
tokenizer = model.tokenizer
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
output_ids = model.generate(input_ids, max_length=250)
print(model.expert_tokenizer(text=input_text).decode(output_ids[0], skip_special_tokens=True))
```
# Call the Italian expert:
```
messages = [
{'role': 'system', 'content': 'Sei un utile assistente AI.'},
{'role': 'user', 'content': 'Hai qualche idea su cosa potrei fare a Roma?''}
]
tokenizer = model.tokenizer
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
output_ids = model.generate(input_ids ,temperature=0.6, do_sample=True, top_p=0.9,top_k=20, max_length=500)
print(model.expert_tokenizer(text=input_text).decode(output_ids[0], skip_special_tokens=True))
```
# Call the French expert:
```
messages = [
{'role': 'system', 'content': 'Vous êtes un assistant IA allemand sympathique et serviable'},
{'role': 'user', 'content': 'J'aimerais faire du shopping à Paris. Que pouvez-vous recommander?'}
]
tokenizer = model.tokenizer
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
print(input_text)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
output_ids = model.generate(input_ids ,temperature=0.6, do_sample=True, top_p=0.9,top_k=20, max_length=250)
print(model.expert_tokenizer(text=input_text).decode(output_ids[0], skip_special_tokens=True))
```
# Call the Scandinavian expert:
```
messages = [
{'role': 'system', 'content': 'Du är en hjälpsam AI-assistent'},
{'role': 'user', 'content': 'Jag kommer från Tyskland och skulle vilja resa till Sverige. Är en färja över Danmark ett bra sätt att resa?'}
]
tokenizer = model.tokenizer
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
output_ids = model.generate(input_ids ,temperature=0.1, do_sample=True, top_p=0.9,top_k=20, max_length=250)
print(model.expert_tokenizer(text=input_text).decode(output_ids[0], skip_special_tokens=True))
```
# Switch expert and or quantization:
Go into the config file of the kraken_model folder
```
"models": {
"expert1": "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct", # Switch to a german/english model of your choice
"expert2": "mii-community/zefiro-7b-dpo-ITA", # Switch to a italian model of your choice
"expert3": "paulml/Hermes-2-Pro-French", # Switch to a french model of your choice
"expert4": "norallm/normistral-7b-warm-instruct" # Switch to a scandinavian model of your choice
},
# Currently supported: "4bit","8bit" and "awq"
"quantization": {
"expert1": null,
"expert2": null,
"expert3": null,
"expert4": null
},
"router": "kraken_router",
# Adjust the tokenizer to your selected model
"tokenizers": {
"expert1": "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct",
"expert2": "mii-community/zefiro-7b-dpo-ITA",
"expert3": "paulml/Hermes-2-Pro-French",
"expert4": "norallm/normistral-7b-warm-instruct"
}
},
"model_type": "kraken",
"torch_dtype": "float32",
"transformers_version": "4.41.0"
}
```
## Cite As
Fernando Fernandes Neto, David Golchinfar, Lucas Atkins, Eric Hartford - [Kraken: An OpenSource Collection of Experts Model, 2024](https://github.com/cognitivecomputations/kraken) |