|
--- |
|
base_model: intfloat/multilingual-e5-small |
|
language: |
|
- multilingual |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:2320 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: 'MVGO; medium vacuum |
|
|
|
gas oil' |
|
sentences: |
|
- 과분해 |
|
- Medium Vacuum Gas Oil(MVGO) ; |
|
- '선적 전 또는 양하 후에 화물창에 잔존하는 소량의 액체화물 양을 결정하는 수학 |
|
|
|
적인 계산 수식' |
|
- source_sentence: PLE; plain large end |
|
sentences: |
|
- Plain Large End ; |
|
- '부하중 변압기 Tap 변환기 ; |
|
|
|
변압기 권선의 Tap을 무정전으로 변경하는 장치' |
|
- Cone Roof Tank에서 Tank내의 Vapor가 외부로 나갈 수 있도록 만들어 놓은 구멍 |
|
- source_sentence: Fluidization |
|
sentences: |
|
- '핵심성과지표; |
|
|
|
어떤 계획이나 목표가 성공하였는지 또는 성공하고 있는지를 확인하려면 그 성공 |
|
|
|
을 구성하는 요소들을 측정하는 지표를 찾아 측정하여야 하는데, 이들 지표 중 성 |
|
|
|
공을 확인할 수 있는 가장 결정적인 지표를 KPI라고 부릅니다.' |
|
- '전압변동에 영향을 주는 무효전력을 줄이기 위한 조상설비의 일종으로 정지형 무 |
|
|
|
효전력 보상장치' |
|
- 고체층을 액체나 기체로 확대시키거나 현탁시켜 유통하도록 하는 것 |
|
- source_sentence: 'SH; surface hardened |
|
|
|
steel body' |
|
sentences: |
|
- Surface Hardened Steel Body ; |
|
- 분산제 ; 슬러지 생성을 방지하기 위하여 Oil에 넣어주는 약품 |
|
- '작업위험성평가; |
|
|
|
현장에서 수행되는 작업을 포함한 전반적인 직무 활동에 대하여 위험요인을 분석 |
|
|
|
하여 현재 안전조치를 검토하고 안전대책을 마련하는 기법' |
|
- source_sentence: U-205200 |
|
sentences: |
|
- 물속의 (-)ion을 OH-로 치환해 주는 이온교환수지탑 |
|
- 차단기, 스위치류 , 스위치 |
|
- 올레핀 송유/동력 Nitrogen Section |
|
model-index: |
|
- name: Multilingual base soil embedding model (quantized) |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.2441860465116279 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.31007751937984496 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.3643410852713178 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.4108527131782946 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.2441860465116279 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.10335917312661498 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.07286821705426358 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.041085271317829464 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.2441860465116279 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.31007751937984496 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.3643410852713178 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.4108527131782946 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.3172493867293268 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.28840746893072483 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.3003133446683658 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.2054263565891473 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.28294573643410853 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.3178294573643411 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.38372093023255816 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.2054263565891473 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.09431524547803617 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.06356589147286822 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.03837209302325582 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.2054263565891473 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.28294573643410853 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.3178294573643411 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.38372093023255816 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.2850988708112555 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.25465270087363123 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.26532412971784447 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.1937984496124031 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.2713178294573643 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.29844961240310075 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.3488372093023256 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.1937984496124031 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.0904392764857881 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.059689922480620154 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.03488372093023256 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.1937984496124031 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.2713178294573643 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.29844961240310075 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.3488372093023256 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.26467320016495083 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.2385474344776671 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.2482312240959752 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# Multilingual base soil embedding model (quantized) |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision fd1525a9fd15316a2d503bf26ab031a61d056e98 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 384 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** multilingual |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("ValentinaKim/Multilingual-base-soil-embedding") |
|
# Run inference |
|
sentences = [ |
|
'U-205200', |
|
'올레핀 송유/동력 Nitrogen Section', |
|
'차단기, 스위치류 , 스위치', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 384] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.2442 | |
|
| cosine_accuracy@3 | 0.3101 | |
|
| cosine_accuracy@5 | 0.3643 | |
|
| cosine_accuracy@10 | 0.4109 | |
|
| cosine_precision@1 | 0.2442 | |
|
| cosine_precision@3 | 0.1034 | |
|
| cosine_precision@5 | 0.0729 | |
|
| cosine_precision@10 | 0.0411 | |
|
| cosine_recall@1 | 0.2442 | |
|
| cosine_recall@3 | 0.3101 | |
|
| cosine_recall@5 | 0.3643 | |
|
| cosine_recall@10 | 0.4109 | |
|
| cosine_ndcg@10 | 0.3172 | |
|
| cosine_mrr@10 | 0.2884 | |
|
| **cosine_map@100** | **0.3003** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.2054 | |
|
| cosine_accuracy@3 | 0.2829 | |
|
| cosine_accuracy@5 | 0.3178 | |
|
| cosine_accuracy@10 | 0.3837 | |
|
| cosine_precision@1 | 0.2054 | |
|
| cosine_precision@3 | 0.0943 | |
|
| cosine_precision@5 | 0.0636 | |
|
| cosine_precision@10 | 0.0384 | |
|
| cosine_recall@1 | 0.2054 | |
|
| cosine_recall@3 | 0.2829 | |
|
| cosine_recall@5 | 0.3178 | |
|
| cosine_recall@10 | 0.3837 | |
|
| cosine_ndcg@10 | 0.2851 | |
|
| cosine_mrr@10 | 0.2547 | |
|
| **cosine_map@100** | **0.2653** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.1938 | |
|
| cosine_accuracy@3 | 0.2713 | |
|
| cosine_accuracy@5 | 0.2984 | |
|
| cosine_accuracy@10 | 0.3488 | |
|
| cosine_precision@1 | 0.1938 | |
|
| cosine_precision@3 | 0.0904 | |
|
| cosine_precision@5 | 0.0597 | |
|
| cosine_precision@10 | 0.0349 | |
|
| cosine_recall@1 | 0.1938 | |
|
| cosine_recall@3 | 0.2713 | |
|
| cosine_recall@5 | 0.2984 | |
|
| cosine_recall@10 | 0.3488 | |
|
| cosine_ndcg@10 | 0.2647 | |
|
| cosine_mrr@10 | 0.2385 | |
|
| **cosine_map@100** | **0.2482** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 2,320 training samples |
|
* Columns: <code>anchor</code> and <code>positive</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | |
|
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 6.72 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 35.77 tokens</li><li>max: 408 tokens</li></ul> | |
|
* Samples: |
|
| anchor | positive | |
|
|:--------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------| |
|
| <code>Deionizer</code> | <code>탈이온장치 ; Demineralizer와 동일</code> | |
|
| <code>Sub-CC; sub-contracting<br>committee</code> | <code>외주 계약의 투명성과 공정성을 확보하기 위한 Sub-계약위원회로서 위원 및 위원<br>장은 CEO가 임명한다. CC이원원 부문장 이상 임원으로 하고 간사는 구매관리팀<br>장이 한다.</code> | |
|
| <code>In-line Sampler</code> | <code>원유 속의 물과 침전물의 함량을 측정하기 위하여 원유하역 Line에 설치해 놓은<br>시료채취기</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 10 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `tf32`: False |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: False |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_64_cosine_map@100 | |
|
|:------:|:----:|:-------------:|:----------------------:|:----------------------:|:---------------------:| |
|
| 0.8767 | 4 | - | 0.2156 | 0.2448 | 0.1831 | |
|
| 1.9726 | 9 | - | 0.2511 | 0.2765 | 0.2154 | |
|
| 2.1918 | 10 | 7.6309 | - | - | - | |
|
| 2.8493 | 13 | - | 0.2531 | 0.2852 | 0.2345 | |
|
| 3.9452 | 18 | - | 0.2617 | 0.2914 | 0.2353 | |
|
| 4.3836 | 20 | 5.3042 | - | - | - | |
|
| 4.8219 | 22 | - | 0.2626 | 0.2946 | 0.2422 | |
|
| 5.9178 | 27 | - | 0.2629 | 0.2987 | 0.2481 | |
|
| 6.5753 | 30 | 4.2433 | - | - | - | |
|
| 6.7945 | 31 | - | 0.2684 | 0.2988 | 0.2495 | |
|
| 7.8904 | 36 | - | 0.2652 | 0.3003 | 0.2488 | |
|
| 8.7671 | 40 | 3.9117 | 0.2653 | 0.3003 | 0.2482 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.1.2+cu121 |
|
- Accelerate: 1.0.0 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |