Paraphrase-Generation

​

Model description

​ T5 Model for generating paraphrases of english sentences. Trained on the Google PAWS dataset. ​

How to use

​## Requires sentencepiece: # !pip install sentencepiece PyTorch and TF models available ​

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
​
tokenizer = AutoTokenizer.from_pretrained("Vamsi/T5_Paraphrase_Paws")  
model = AutoModelForSeq2SeqLM.from_pretrained("Vamsi/T5_Paraphrase_Paws").to('cuda')
​
sentence = "This is something which i cannot understand at all"

text =  "paraphrase: " + sentence + " </s>"

encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")


outputs = model.generate(
    input_ids=input_ids, attention_mask=attention_masks,
    max_length=256,
    do_sample=True,
    top_k=120,
    top_p=0.95,
    early_stopping=True,
    num_return_sequences=5
)

for output in outputs:
    line = tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True)
    print(line)
​

For more reference on training your own T5 model or using this model, do check out Paraphrase Generation.

Downloads last month
7,618
Safetensors
Model size
223M params
Tensor type
F32
Β·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for Vamsi/T5_Paraphrase_Paws

Finetunes
1 model
Quantizations
1 model

Spaces using Vamsi/T5_Paraphrase_Paws 16