Model Description
This model is a fine-tuned version of meta-llama/Llama-3.2-1B
optimized for Persona Classifier tasks when given a Detailed Persona. The training was done on argilla/FinePersonas-v0.1
dataset with the 10k records.
- Developed by: Vedant Rajpurohit
- Model type: Causal Language Model
- Language(s): English
- Fine-tuned from model:
meta-llama/Llama-3.2-1B
Direct Use
model_id_new = "Vedant3907/Llama-3.2-1B-PersonaClassifier"
tokenzier = AutoTokenizer.from_pretrained(model_id_new)
model_pretrained = AutoModelForCausalLM.from_pretrained(
model_id_new,
device_map="auto",
torch_dtype="float16")
prompt = """Given the persona give the associated labels:
### Persona:
A social justice activist and blogger focused on anti-colonialism, anti-racism, and media representation, particularly within the context of intersectional people of color experiences.
### Labels:
"""
pipe = pipeline(task="text-generation",
model=model_pretrained,
tokenizer=tokenizer,
max_new_tokens=50,
temperature=0.1,
pad_token_id = tokenizer.eos_token_id)
result = pipe(testing_prompt)
print(extract_labels(result[0]['generated_text']))
#The extract_labels function is to print just the lsit of persona generated by model if sometime it generates random things.
'''
import re
def extract_labels(output_text):
"""
Extracts the list of labels from the generated text.
Args:
output_text (str): The raw output text from the model.
Returns:
list: A list of labels if found, otherwise an empty list.
"""
try:
# Find the content after "Labels:" and extract the list
match = re.search(r"### Labels:\s*(\[.*?\])", output_text)
if match:
labels = eval(match.group(1)) # Convert string representation of list to Python list
if isinstance(labels, list):
return labels
except Exception as e:
print(f"Error extracting labels: {e}")
# Return an empty list if extraction fails
return []
'''
Training Details
Training Procedure
The model was fine-tuned using with LoRA adapters, enabling efficient training. Below are the hyperparameters used:
training_arguments = TrainingArguments(
output_dir=output_dir,
num_train_epochs=3,
per_device_train_batch_size=1,
gradient_accumulation_steps=8,
optim="paged_adamw_32bit",
logging_steps=10,
learning_rate=2e-4,
fp16=True,
bf16=False,
max_grad_norm=0.3,
# max_steps=-1,
warmup_steps=7,
group_by_length=False,
lr_scheduler_type="cosine",
report_to="wandb",
eval_strategy="steps",
eval_steps = 0.2
)
Hardware
- Trained on google colab with its T4 GPU
- Downloads last month
- 34
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Vedant3907/Llama-3.2-1B-PersonaClassifier
Base model
meta-llama/Llama-3.2-1B