segformer_rust

This model is a fine-tuned version of nvidia/mit-b3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1989
  • Mean Iou: 0.4909
  • Mean Accuracy: 0.5770
  • Overall Accuracy: 0.9351
  • Per Category Iou: [0.9330033577422647, 0.43802844257518975, 0.10174998526948427]
  • Per Category Accuracy: [0.964764208993714, 0.619516063444351, 0.14676017920088064]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.3245 1.0 288 0.2058 0.3737 0.4006 0.9292 [0.928254594835728, 0.19278478772636354, 0.0] [0.9934403780274128, 0.20834926267819698, 0.0]
0.2376 2.0 576 0.2186 0.4440 0.5394 0.9205 [0.9174093139660287, 0.3952780826522951, 0.019450366169241784] [0.9466914641620554, 0.6519016208812702, 0.019680530318053235]
0.2267 3.0 864 0.1989 0.4456 0.5055 0.9349 [0.932781347474167, 0.4035973409203434, 0.0003156374054605271] [0.9714340031497313, 0.5447040039563373, 0.0003156655078774732]
0.2227 4.0 1152 0.1916 0.4707 0.5302 0.9370 [0.9346588332598218, 0.4138838160094419, 0.06341712806343888] [0.9731864476801606, 0.54656085524886, 0.07078191965098726]
0.2144 5.0 1440 0.1896 0.4891 0.5724 0.9328 [0.9302444676641086, 0.43202079299936413, 0.10517087813054486] [0.9610582832573524, 0.6347191782872807, 0.12137743477257919]
0.2003 6.0 1728 0.2024 0.4630 0.5614 0.9260 [0.9229095306993824, 0.428931900333899, 0.037186726485148515] [0.9487448882036036, 0.6966673460182111, 0.03891184433643468]
0.1941 7.0 2016 0.2073 0.4860 0.5888 0.9219 [0.918639874525932, 0.4060024340936176, 0.13340049908214777] [0.9461779703553824, 0.669512151538538, 0.15057649425124547]
0.1867 8.0 2304 0.1807 0.4634 0.5301 0.9372 [0.9349180068188713, 0.43659922555690217, 0.018734234161859927] [0.9689566528873623, 0.602518494621371, 0.018875178573596604]
0.1854 9.0 2592 0.1921 0.4725 0.5473 0.9345 [0.9321974693686552, 0.43270280485825646, 0.052579663560228966] [0.9642507962436797, 0.6216561173996741, 0.05587279489431276]
0.18 10.0 2880 0.1847 0.4771 0.5591 0.9335 [0.9311550048182651, 0.4407180368387474, 0.05928079306817498] [0.9605858689552134, 0.6528219329451048, 0.06379276154708474]
0.1838 11.0 3168 0.1887 0.4652 0.5400 0.9344 [0.9321143595621934, 0.43344353554824266, 0.02996913887506222] [0.9638921692510604, 0.6257803286194064, 0.030457674516485428]
0.1852 12.0 3456 0.1873 0.4783 0.5588 0.9338 [0.931356267339074, 0.43971228563091297, 0.06380926339455255] [0.9613249758102673, 0.6471117095414763, 0.06799758799176032]
0.1682 13.0 3744 0.1778 0.4578 0.5035 0.9411 [0.939396147353813, 0.410371405648735, 0.023504333548772998] [0.981291057821883, 0.5056175933375897, 0.023695148059264176]
0.1793 14.0 4032 0.1728 0.4720 0.5296 0.9402 [0.938163188412165, 0.436672912065328, 0.04117603263361246] [0.974742378495531, 0.5715719389819965, 0.042525809702262676]
0.178 15.0 4320 0.1825 0.4794 0.5492 0.9369 [0.9348434866894885, 0.42443186583904435, 0.07881529998132747] [0.9714614165049668, 0.5650121075899666, 0.11103331889905584]
0.1651 16.0 4608 0.1912 0.4640 0.5322 0.9362 [0.9340976310450665, 0.4306683229566104, 0.02708604107096439] [0.9679043107574059, 0.6011619809118315, 0.02741028826736059]
0.1761 17.0 4896 0.1757 0.4724 0.5310 0.9389 [0.9368263731599995, 0.42525112196356074, 0.055183904634890216] [0.9744989654092739, 0.5559049976770041, 0.06246130062283233]
0.1633 18.0 5184 0.1917 0.4620 0.5384 0.9354 [0.9330768754070563, 0.44480333780621734, 0.00820601828493007] [0.9636645135753821, 0.6433031553142516, 0.008227538173267988]
0.1641 19.0 5472 0.1875 0.5028 0.5812 0.9354 [0.9331706683726091, 0.4415413111697262, 0.133770201971674] [0.9634674000411962, 0.6392245347005364, 0.1408556154060956]
0.1629 20.0 5760 0.1793 0.4675 0.5268 0.9393 [0.9374054652680682, 0.4330992564780264, 0.03193276637035433] [0.973550456833595, 0.5746419640278527, 0.032230257753028166]
0.1562 21.0 6048 0.2019 0.4716 0.5546 0.9325 [0.9300698286146659, 0.43671042563474527, 0.04809297394799092] [0.9592354491418064, 0.6554619381223432, 0.049203349291978456]
0.1626 22.0 6336 0.1970 0.4814 0.5547 0.9367 [0.9344970508696149, 0.4450380854494638, 0.06452712765123607] [0.9658097423660128, 0.6317005392634606, 0.066633751117982]
0.1568 23.0 6624 0.1956 0.4917 0.5775 0.9355 [0.9330854195306507, 0.4390415550387406, 0.10283427594052297] [0.9658042305145758, 0.6119827953416446, 0.15474894474639514]
0.1595 24.0 6912 0.1817 0.4769 0.5411 0.9383 [0.9362300601150796, 0.4346106438489147, 0.05977008091938032] [0.9712496965644727, 0.586809439959973, 0.06537513608016285]
0.1539 25.0 7200 0.1893 0.4825 0.5650 0.9358 [0.933537238237644, 0.4394361715176897, 0.07460055177704666] [0.9667388784050233, 0.6055558721569863, 0.12278174158326487]
0.1521 26.0 7488 0.1933 0.4841 0.5721 0.9355 [0.9332085743268924, 0.44365656488299987, 0.07547064782962047] [0.9657158949896331, 0.6132794230856533, 0.13717285114752506]
0.1468 27.0 7776 0.2049 0.4861 0.5735 0.9327 [0.9304477363857275, 0.43790721804897553, 0.08980648951011608] [0.9595730176196706, 0.6520673697794168, 0.10889650623034679]
0.1534 28.0 8064 0.1950 0.4976 0.5800 0.9355 [0.9333228433994155, 0.4429051769820105, 0.11658642467846855] [0.9637939610275141, 0.636643256405625, 0.13955248343767832]
0.1478 29.0 8352 0.2049 0.4913 0.5841 0.9344 [0.9322490633597582, 0.4375642417642195, 0.10407288263883356] [0.9639606458995019, 0.6190808277013159, 0.169160289279109]
0.1414 30.0 8640 0.1989 0.4909 0.5770 0.9351 [0.9330033577422647, 0.43802844257518975, 0.10174998526948427] [0.964764208993714, 0.619516063444351, 0.14676017920088064]

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
43
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Ventalik/segformer_rust

Base model

nvidia/mit-b3
Finetuned
(12)
this model