metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- sst2
metrics:
- accuracy
model-index:
- name: distilbert_base_SST2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sst2
type: sst2
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8967889908256881
distilbert_base_SST2
This model is a fine-tuned version of distilbert-base-uncased on the sst2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3718
- Accuracy: 0.8968
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.4401 | 0.06 | 500 | 0.3732 | 0.8417 |
0.3465 | 0.12 | 1000 | 0.3451 | 0.8761 |
0.3408 | 0.18 | 1500 | 0.3465 | 0.8612 |
0.3059 | 0.24 | 2000 | 0.4580 | 0.8589 |
0.2974 | 0.3 | 2500 | 0.3338 | 0.8830 |
0.3023 | 0.36 | 3000 | 0.4487 | 0.8475 |
0.2636 | 0.42 | 3500 | 0.4330 | 0.8888 |
0.2558 | 0.48 | 4000 | 0.4193 | 0.8876 |
0.2466 | 0.53 | 4500 | 0.4343 | 0.8945 |
0.2393 | 0.59 | 5000 | 0.4935 | 0.875 |
0.2279 | 0.65 | 5500 | 0.3818 | 0.8876 |
0.2181 | 0.71 | 6000 | 0.4003 | 0.8968 |
0.2245 | 0.77 | 6500 | 0.3496 | 0.9048 |
0.2279 | 0.83 | 7000 | 0.3759 | 0.9014 |
0.2152 | 0.89 | 7500 | 0.4037 | 0.8899 |
0.2174 | 0.95 | 8000 | 0.3718 | 0.8968 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0