metadata
license: apache-2.0
base_model: distilbert-base-uncased-finetuned-sst-2-english
tags:
- generated_from_trainer
datasets:
- sst2
metrics:
- accuracy
model-index:
- name: distilbert_base_SST2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: sst2
type: sst2
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8979357798165137
distilbert_base_SST2
This model is a fine-tuned version of distilbert-base-uncased-finetuned-sst-2-english on the sst2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.4747
- Accuracy: 0.8979
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1303 | 0.06 | 500 | 0.6599 | 0.8784 |
0.1781 | 0.12 | 1000 | 0.5644 | 0.8716 |
0.1856 | 0.18 | 1500 | 0.5357 | 0.8716 |
0.1833 | 0.24 | 2000 | 0.6749 | 0.8727 |
0.1887 | 0.3 | 2500 | 0.4967 | 0.8945 |
0.1873 | 0.36 | 3000 | 0.6415 | 0.8658 |
0.1787 | 0.42 | 3500 | 0.4886 | 0.9014 |
0.1979 | 0.48 | 4000 | 0.4122 | 0.8865 |
0.1662 | 0.53 | 4500 | 0.5310 | 0.8888 |
0.1718 | 0.59 | 5000 | 0.5415 | 0.8945 |
0.1808 | 0.65 | 5500 | 0.4059 | 0.8956 |
0.1666 | 0.71 | 6000 | 0.4731 | 0.8876 |
0.1762 | 0.77 | 6500 | 0.3817 | 0.8807 |
0.1782 | 0.83 | 7000 | 0.4583 | 0.8956 |
0.1739 | 0.89 | 7500 | 0.4756 | 0.8888 |
0.1715 | 0.95 | 8000 | 0.4871 | 0.8911 |
0.1682 | 1.01 | 8500 | 0.4936 | 0.8922 |
0.095 | 1.07 | 9000 | 0.4956 | 0.8899 |
0.0928 | 1.13 | 9500 | 0.6543 | 0.8716 |
0.0855 | 1.19 | 10000 | 0.5812 | 0.8956 |
0.1032 | 1.25 | 10500 | 0.6683 | 0.8716 |
0.0982 | 1.31 | 11000 | 0.6076 | 0.8842 |
0.0907 | 1.37 | 11500 | 0.5826 | 0.8956 |
0.1085 | 1.43 | 12000 | 0.4708 | 0.8922 |
0.0785 | 1.48 | 12500 | 0.5486 | 0.8956 |
0.0903 | 1.54 | 13000 | 0.6104 | 0.875 |
0.0764 | 1.6 | 13500 | 0.5576 | 0.8888 |
0.0982 | 1.66 | 14000 | 0.5447 | 0.8888 |
0.0864 | 1.72 | 14500 | 0.4833 | 0.8922 |
0.0888 | 1.78 | 15000 | 0.4737 | 0.8945 |
0.0775 | 1.84 | 15500 | 0.4818 | 0.8991 |
0.0958 | 1.9 | 16000 | 0.4674 | 0.8991 |
0.0805 | 1.96 | 16500 | 0.4747 | 0.8979 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.15.0