VishnuPJ's picture
Update README.md
c227bf8 verified
metadata
license: apache-2.0
datasets:
  - VishnuPJ/Alpaca_Instruct_Malayalam
language:
  - ml
  - en
pipeline_tag: text-generation

MalayaLLM [മലയാളം/Malayalam]

Baby MalayaLLM

MalayaLLM_7B_Instruct_v0.2

This is an attempt to construct a Language Model (LLM) focused on generative AI for Malayalam language. While several LLMs are proficient in supporting multiple languages, including Malayalam, enhancing their performance for specific tasks such as content generation and question answering specifically in Malayalam can be achieved through dedicated training on a Malayalam dataset. In pursuit of this, I've undertaken the continuous pre-training of the LLAMA2 model using a comprehensive Malayalam dataset.

The model is currently in its early stages, and ongoing training and fine-tuning with a more comprehensive dataset are necessary to enhance its performance. I will consistently provide updated revisions to the model.

Github Repo:

For comprehensive insights into model training, fine-tuning, and other advanced techniques, refer to the MalayaLLM GitHub repository at the following link: https://github.com/VishnuPJ/MalayaLLM

Introducing the Developer:

Discover the mind behind this model and stay updated on their contributions to the field https://www.linkedin.com/in/vishnu-prasad-j/

Model description

The MalayaLLM models have been improved and customized to incorporate a comprehensive Malayalam vocabulary comprising approximately 18,000 tokens, expanding upon the groundwork laid by the original LLaMA-2.

Prompt Template Without Input

{system_prompt}
### Instruction:
{instruction or query}
### Response:
{response}

Prompt Template With Input

{system_prompt}
### Instruction:
{instruction or query}
### Input:
{input}
### Response:
{response}

Available Models

Model Type Data Base Model # Params Download Links
MalayaLLM 7B Base #v0.1 Base model 12GB LLaMA 7B 7B HF Hub
MalayaLLM 7B Instruct #v0.1 Instruction following model 52k instructions MalayaLLM 7B Base 7B HF Hub
MalayaLLM 7B Instruct #v0.2 Instruction following model 52k instructions MalayaLLM 7B Base 7B HF Hub
** Note : MalayaLLM 7B Instruct v0.2 is the latest model.

Quantized Version of Available Models

Model Format Bits Download Links
MalayaLLM 7B Instruct #v0.1 GGUF Q8_0 HF Hub
MalayaLLM 7B Instruct #v0.2 GGUF Q8_0 HF Hub

A simple example code

import os
import torch
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    pipeline,
)
model_name = "VishnuPJ/MalayaLLM_7B_Instruct_v0.2"
print(f"Loading model...")
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
    model_name,
    low_cpu_mem_usage=True,
    return_dict=True,
    torch_dtype=torch.float16,
    device_map="auto",
)

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"

pipe = pipeline(task="text-generation", model=base_model, tokenizer=tokenizer, max_length=200)
sys_prompt = "ഒരു ടാസ്ക് വിവരിക്കുന്ന ഒരു നിർദ്ദേശം ചുവടെയുണ്ട്. അഭ്യർത്ഥന ശരിയായി പൂർത്തിയാക്കുന്ന ഒരു പ്രതികരണം എഴുതുക."

while True:
    inst = input("Enter instruction (or 'exit' to end): ")
    if inst.lower() == 'exit':
        break
    # Generate response using the user-provided instruction
    result = pipe(f"{sys_prompt} ### Instruction: {inst} ### Response:")
    # Print the generated text
    print(result[0]['generated_text'])

Example Output

Enter instruction (or 'exit' to end): സൂര്യൻ ഉദിക്കുന്ന ദിശ ഏതെന്നു പറയുക .
ഒരു ടാസ്ക് വിവരിക്കുന്ന ഒരു നിർദ്ദേശം ചുവടെയുണ്ട്. അഭ്യർത്ഥന ശരിയായി പൂർത്തിയാക്കുന്ന ഒരു പ്രതികരണം എഴുതുക. ### Instruction: സൂര്യൻ ഉദിക്കുന്ന ദിശ ഏതെന്നു പറയുക . ### Response: സൂര്യൻ ഉദിക്കുന്ന ദിശ കിഴക്കായിരിക്കും.
Enter instruction (or 'exit' to end): Where does the Sun rise?
ഒരു ടാസ്ക് വിവരിക്കുന്ന ഒരു നിർദ്ദേശം ചുവടെയുണ്ട്. അഭ്യർത്ഥന ശരിയായി പൂർത്തിയാക്കുന്ന ഒരു പ്രതികരണം എഴുതുക. ### Instruction: Where does the Sun rise? ### Response: The Sun rises in the east.
Enter instruction (or 'exit' to end):

Demo Video

Below is a brief video highlighting the model's bilingual ability to converse in both Malayalam and English. In this demonstration, I utilize Google's transliteration tool to seamlessly translate from Manglish to Malayalam. Subsequently, I copied the translated text into the prompt console for further interaction.

🌟Happy coding💻🌟