SegFormer_b2_10

This model is a fine-tuned version of nvidia/segformer-b2-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.8097
  • eval_mean_iou: 0.7782
  • eval_mean_accuracy: 0.8662
  • eval_overall_accuracy: 0.9610
  • eval_accuracy_road: 0.9903
  • eval_accuracy_sidewalk: 0.9398
  • eval_accuracy_building: 0.9628
  • eval_accuracy_wall: 0.6563
  • eval_accuracy_fence: 0.6967
  • eval_accuracy_pole: 0.7388
  • eval_accuracy_traffic light: 0.8695
  • eval_accuracy_traffic sign: 0.8842
  • eval_accuracy_vegetation: 0.9628
  • eval_accuracy_terrain: 0.7418
  • eval_accuracy_sky: 0.9803
  • eval_accuracy_person: 0.9096
  • eval_accuracy_rider: 0.7585
  • eval_accuracy_car: 0.9782
  • eval_accuracy_truck: 0.8827
  • eval_accuracy_bus: 0.9472
  • eval_accuracy_train: 0.8521
  • eval_accuracy_motorcycle: 0.8134
  • eval_accuracy_bicycle: 0.8929
  • eval_iou_road: 0.9845
  • eval_iou_sidewalk: 0.8702
  • eval_iou_building: 0.9233
  • eval_iou_wall: 0.5943
  • eval_iou_fence: 0.5845
  • eval_iou_pole: 0.5944
  • eval_iou_traffic light: 0.6817
  • eval_iou_traffic sign: 0.7808
  • eval_iou_vegetation: 0.9255
  • eval_iou_terrain: 0.6590
  • eval_iou_sky: 0.9506
  • eval_iou_person: 0.7943
  • eval_iou_rider: 0.5888
  • eval_iou_car: 0.9484
  • eval_iou_truck: 0.8282
  • eval_iou_bus: 0.8676
  • eval_iou_train: 0.8049
  • eval_iou_motorcycle: 0.6449
  • eval_iou_bicycle: 0.7604
  • eval_runtime: 188.4044
  • eval_samples_per_second: 2.654
  • eval_steps_per_second: 0.663
  • epoch: 34.4086
  • step: 6400

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.1.2+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
27.4M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Vrjb/SegFormer_b2_10

Finetuned
(5)
this model