metadata
license: other
tags:
- axolotl
- generated_from_trainer
base_model: chargoddard/internlm2-20b-llama
model-index:
- name: Stellaris-internlm2-20b-r512
results: []
See axolotl config
axolotl version: 0.3.0
base_model: chargoddard/internlm2-20b-llama
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: ARB/arb_law.json
ds_type: json
type: alpaca
conversation: chatml
- path: ARB/arb_math.json
ds_type: json
type: alpaca
conversation: chatml
- path: ARB/arb_mcat_reading.json
ds_type: json
type: alpaca
conversation: chatml
- path: ARB/arb_mcat_science.json
ds_type: json
type: alpaca
conversation: chatml
- path: ARB/arb_physics.json
ds_type: json
type: alpaca
conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./Weyaxi-test
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 512
lora_alpha: 256
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
lora_modules_to_save:
- embed_tokens
- lm_head
wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
hub_model_id: Weyaxi/Weyaxi-test
gradient_accumulation_steps: 4 # change
micro_batch_size: 2 # change
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
save_steps: 20
save_total_limit: 5
debug:
#deepspeed: deepspeed/zero3_bf16.json
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
eos_token: "<|im_end|>"
tokens:
- "<|im_start|>"
Weyaxi-test
This model is a fine-tuned version of chargoddard/internlm2-20b-llama on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: True
- load_in_4bit: False
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Framework versions
- PEFT 0.7.0
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0