Description
This repository provides a Diffusers version of FLUX.1-dev Depth ControlNet checkpoint by Xlabs AI, original repo.
How to use
This model can be used directly with the diffusers library
import torch
from diffusers.utils import load_image
from diffusers import FluxControlNetModel
from diffusers.pipelines import FluxControlNetPipeline
from PIL import Image
import numpy as np
generator = torch.Generator(device="cuda").manual_seed(87544357)
controlnet = FluxControlNetModel.from_pretrained(
"Xlabs-AI/flux-controlnet-depth-diffusers",
torch_dtype=torch.bfloat16,
use_safetensors=True,
)
pipe = FluxControlNetPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
controlnet=controlnet,
torch_dtype=torch.bfloat16
)
pipe.to("cuda")
control_image = load_image("https://huggingface.co/Xlabs-AI/flux-controlnet-depth-diffusers/resolve/main/depth_example.png")
prompt = "photo of fashion woman in the street"
image = pipe(
prompt,
control_image=control_image,
controlnet_conditioning_scale=0.7,
num_inference_steps=25,
guidance_scale=3.5,
height=768,
width=1024,
generator=generator,
num_images_per_prompt=1,
).images[0]
image.save("output_test_controlnet.png")
License
Our weights fall under the FLUX.1 [dev] Non-Commercial License
- Downloads last month
- 117
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for XLabs-AI/flux-controlnet-depth-diffusers
Base model
black-forest-labs/FLUX.1-dev