MODNet: Trimap-Free Portrait Matting in Real Time

image/gif

For more information, check out the official repository and example colab.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @xenova/transformers

You can then use the model for portrait matting, as follows:

import { AutoModel, AutoProcessor, RawImage } from '@xenova/transformers';

// Load model and processor
const model = await AutoModel.from_pretrained('Xenova/modnet', { quantized: false });
const processor = await AutoProcessor.from_pretrained('Xenova/modnet');

// Load image from URL
const url = 'https://images.pexels.com/photos/5965592/pexels-photo-5965592.jpeg?auto=compress&cs=tinysrgb&w=1024';
const image = await RawImage.fromURL(url);

// Pre-process image
const { pixel_values } = await processor(image);

// Predict alpha matte
const { output } = await model({ input: pixel_values });

// Save output mask
const mask = await RawImage.fromTensor(output[0].mul(255).to('uint8')).resize(image.width, image.height);
mask.save('mask.png');
Input image Output mask
image/png image/png

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using ๐Ÿค— Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).

Downloads last month
3,956
Inference Examples
Inference API (serverless) does not yet support transformers.js models for this pipeline type.

Spaces using Xenova/modnet 6