Xuuuuuuuu's picture
shawhin/distilbert-base-uncased-lora-text-classification
3c99da8 verified
|
raw
history blame
2.17 kB
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: distilbert-base-uncased
metrics:
  - accuracy
model-index:
  - name: distilbert-base-uncased-lora-text-classification
    results: []

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0117
  • Accuracy: {'accuracy': 0.889}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.4717 {'accuracy': 0.859}
0.4287 2.0 500 0.4378 {'accuracy': 0.876}
0.4287 3.0 750 0.5879 {'accuracy': 0.87}
0.1987 4.0 1000 0.6395 {'accuracy': 0.885}
0.1987 5.0 1250 0.7766 {'accuracy': 0.885}
0.0524 6.0 1500 0.8409 {'accuracy': 0.891}
0.0524 7.0 1750 0.9005 {'accuracy': 0.895}
0.0208 8.0 2000 0.9932 {'accuracy': 0.886}
0.0208 9.0 2250 1.0083 {'accuracy': 0.889}
0.0044 10.0 2500 1.0117 {'accuracy': 0.889}

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.1.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2