File size: 13,274 Bytes
ae4f695 884f9d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
<p align="center" width="100%">
<img src="assets/banner.png" width="100%" height="80%">
</p>
### Quick Use
```python
import os
import torch
import json
import argparse
from tqdm import tqdm
from collections import defaultdict
import torch.nn.functional as F
from time import time
from easydict import EasyDict as edict
from model.mico import *
def load_from_pretrained_dir(pretrain_dir, video_resolution=224, return_modal="full"):
checkpoint_dir = os.path.join(pretrain_dir,'ckpt')
file_cfg = edict(json.load(open(os.path.join(pretrain_dir,'log','hps.json'))))
model_cfg = file_cfg.model_cfg
checkpoint_ls = [ i for i in os.listdir(checkpoint_dir) if i.startswith('model_step')]
checkpoint_ls = [int(i.split('_')[2].split('.')[0]) for i in checkpoint_ls]
checkpoint_ls.sort()
step = checkpoint_ls[-1]
checkpoint_name = 'model_step_'+str(step)+'.pt'
ckpt_file = os.path.join(checkpoint_dir, checkpoint_name)
checkpoint = torch.load(ckpt_file, map_location = 'cpu')
print(f'load_from_pretrained: {ckpt_file}')
new_ckpt = {}
for k,v in checkpoint.items():
if 'video' in k:
new_ckpt[k.replace('video','vision')]=v
elif 'evaclip_model' in k:
new_ckpt[k.replace('evaclip_model','vision_encoder')]=v
elif 'clip_model' in k:
new_ckpt[k.replace('clip_model','vision_encoder')]=v
else:
new_ckpt[k] = v.float()
checkpoint = new_ckpt
if model_cfg.frame_embedding_type == 'adaptive':
if 'vision_frame_embedding' in checkpoint:
pretrain_embed = checkpoint['vision_frame_embedding']
if pretrain_embed.shape[1]!=model_cfg.max_vision_sample_num:
pretrain_embed = F.interpolate(pretrain_embed.permute(0,2,1),model_cfg.max_vision_sample_num,mode='nearest').permute(0,2,1)
checkpoint['vision_frame_embedding'] = pretrain_embed
else:
pretrain_embed = checkpoint['vision_perceiver.vision_frame_embedding']
if pretrain_embed.shape[1]!=model_cfg.max_vision_sample_num:
pretrain_embed = F.interpolate(pretrain_embed.permute(0,2,1),model_cfg.max_vision_sample_num,mode='nearest').permute(0,2,1)
checkpoint['vision_perceiver.vision_frame_embedding'] = pretrain_embed
if 'audio_frame_embedding' in checkpoint:
pretrain_embed_a = checkpoint['audio_frame_embedding']
if pretrain_embed_a.shape[1]!=model_cfg.max_audio_sample_num:
pretrain_embed_a = F.interpolate(pretrain_embed_a.permute(0,2,1),model_cfg.max_audio_sample_num,mode='nearest').permute(0,2,1)
checkpoint['audio_frame_embedding'] = pretrain_embed_a
if model_cfg.vision_encoder_type.startswith('clip'):
vision_width = checkpoint["vision_encoder.visual.positional_embedding"].shape[1]
vision_layers = len([k for k in checkpoint.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = checkpoint["vision_encoder.visual.conv1.weight"].shape[-1]
grid_size = round((checkpoint["vision_encoder.visual.positional_embedding"].shape[0] - 1) ** 0.5)
src = checkpoint["vision_encoder.visual.positional_embedding"]
src_cls = src[0:1]
src_oth = src[1:]
new_grid_size = model_cfg.vision_resolution // vision_patch_size
if new_grid_size!=grid_size:
src_oth = F.interpolate(src_oth.reshape(grid_size,grid_size,vision_width).permute(2,0,1).unsqueeze(0),(new_grid_size,new_grid_size),mode='bilinear')
src_oth = src_oth[0].permute(1,2,0).reshape(-1,src.shape[-1])
tgt = torch.cat((src_cls,src_oth),dim=0)
checkpoint["vision_encoder.visual.positional_embedding"] = tgt
elif model_cfg.vision_encoder_type.startswith('evaclip'):
vision_width = checkpoint["vision_encoder.visual.pos_embed"].shape[2]
vision_layers = len([k for k in checkpoint.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
vision_patch_size = checkpoint["vision_encoder.visual.patch_embed.proj.weight"].shape[-1]
grid_size = round((checkpoint["vision_encoder.visual.pos_embed"].shape[1] - 1) ** 0.5)
src = checkpoint["vision_encoder.visual.pos_embed"][0]
src_cls = src[0:1]
src_oth = src[1:]
new_grid_size = model_cfg.vision_resolution // vision_patch_size
if new_grid_size!=grid_size:
src_oth = F.interpolate(src_oth.reshape(grid_size,grid_size,vision_width).permute(2,0,1).unsqueeze(0),(new_grid_size,new_grid_size),mode='bilinear')
src_oth = src_oth[0].permute(1,2,0).reshape(-1,src.shape[-1])
tgt = torch.cat((src_cls,src_oth),dim=0)
checkpoint["vision_encoder.visual.pos_embed"] = tgt.unsqueeze(0)
else:
pass
if return_modal=="full":
new_ckpt = checkpoint
elif return_modal=="uni":
new_ckpt = defaultdict()
for k in checkpoint.keys():
if "video_encoder" in k:
new_k = ".".join(k.split(".")[1:])
new_ckpt[new_k] = checkpoint[k]
elif return_modal=="text":
new_ckpt = defaultdict()
for k in checkpoint.keys():
if "multimodal_encoder" in k:
new_k = ".".join(k.split(".")[1:])
new_ckpt[new_k] = checkpoint[k]
else:
pass
return new_ckpt, model_cfg
if __name__ == "__main__":
# import ipdb
# ipdb.set_trace()
device = "cuda"
from model.imageprocessor import ImageProcessor
pretrain_path = 'MiCo-g' # please check your
checkpoint, opts = load_from_pretrained_dir("MiCo-g", video_resolution=224, return_modal="full")
model = MiCo.from_pretrained(opts,checkpoint).to(device)
image_file = "example/test.jpeg"
proc = ImageProcessor(image_resolution=224, image_encoder_type="swin", training=True)
image_input = proc(image_file).to(device)
image_input = image_input.unsqueeze(1) # image as a 1 frame video
video_output = model.forward_vision_encoder(image_input)
video_output_pooled = model.pool_vision_for_contra(video_output)
feat_v = model.contra_head_v(video_output_pooled)
feat_v = F.normalize(feat_v,dim=-1)
texts = ["a man is skiing in a snowy day.", "it's a hot day"]
caption_tokens = model.multimodal_encoder.tokenizer(texts,
padding="max_length",
truncation=True,
max_length=30,
return_tensors="pt")
caption_tokens = caption_tokens.to(torch.device('cuda'))
input_ids = caption_tokens.input_ids
attention_mask = caption_tokens.attention_mask
caption_output = model.forward_multimodal_encoder(input_ids, attention_mask).sequence_output
caption_output_pooled = model.pool_text_for_contra(caption_output)
feat_t = model.contra_head_t(caption_output_pooled)
feat_t = F.normalize(feat_t,dim=-1)
sim_t2v = torch.matmul(feat_t, feat_v.permute(1,0))
print(sim_t2v)
video_input = model.get_multimodal_forward_input_vision(video_output)
slice_output = model.forward_multimodal_encoder(input_ids, attention_mask, video_input).sequence_output
slice_scores = F.softmax(model.itm_head(slice_output[:,0]),dim=1)[:,1]
print(slice_scores)
video_input = model.get_multimodal_forward_input_vision(video_output)
init_input_ids = torch.ones(video_input.size(0), 1).long().cuda().fill_(model.multimodal_encoder.tokenizer.bos_token_id)
init_attention_mask = init_input_ids.new_ones(video_input.size(0), 1, 1)
outputs = model.multimodal_encoder.generate(input_ids=init_input_ids,
attention_mask=init_attention_mask,
encoder_hidden_states=video_input,
max_new_tokens=model.max_caption_len,
num_beams=model.beam_size,
eos_token_id=model.multimodal_encoder.tokenizer.sep_token_id,
pad_token_id=model.multimodal_encoder.tokenizer.pad_token_id,
length_penalty=0.6)
outputs_newgen = outputs[:,1:]
captions = model.multimodal_encoder.tokenizer.batch_decode(outputs_newgen, skip_special_tokens=True)
print(captions)
```
### โจ Inspiration of Multimodal Context: Multimedia Brain Cognition
<p align="center" width="100%">
<img src="assets/brain.png" width="100%" height="60%">
</p>
***How the human brain performs coherent multimodal cognition?***
As outlined in Richard Mayer's Cognitive Theory of Multimedia Learning,our brain processes multimedia signals through two distinct channelsโauditory and visualโin sensory memory, as depicted in Figure(a). The sensory memory integrates these signals with prior knowledge through words, transforming new multimedia information into long-term memory. Notably, **1**) multimedia signals in the brain share channels, and **2**) words function as the reasoning interface in our brain.
Inspired by these insights, we categorize diverse modalities into two types: ``knowledge modality`` and ``interface modality``. *Knowledge modalities*, primarily derived from raw sensors, contribute knowledge in diverse formats. For example, images and depth maps offer visual knowledge, while audio and video provide auditory and spatiotemporal knowledge. The language modality, developed by humans, is inherently more abstract and naturally functions as the *interface modality*, facilitating learning, reasoning, and the coordination of knowledge. To this end, we design an omni-modal learning architecture, illustrated in Figure (b), with two distinct branches: one for knowledge modalities and one for the interface modality, *i.e.* natural language. The knowledge and interface modalities are aligned through a novel generative reasoning method.
### ๐ MiCo, An omni-modal and scalable pretraining paradigm
<p align="center" width="100%">
<img src="assets/omnimodal_pretraining.png" width="100%" height="60%">
</p>
We propose collecting large-scale omni-modal paired data, including text,
image, video, depth, and normal maps, to learn universal representations.
<p align="center" width="100%">
<img src="assets/paradigm.png" width="100%" height="60%">
</p>
**๐ Evolution of Pretraining Paradigms**. Masked modeling (a) has shown great success in single modality, general-purpose understanding. Contrastive learning (b) distinguishes transferable features with modality tuples (such as text-image, text-video, text-audio, etc).
*๐๐๐ We aim to achieve general-purpose omni-modal understanding and learn transferable, universal representations in (c).*
### ๐๐๐ The Multimodal Scaling Laws with MiCo: Modalities Help Modalies!
<p align="center" width="100%">
<img src="assets/scaling_laws.png" width="100%" height="60%">
</p>
### ๐ Pretrained Omni-Modal Models
<!-- <details> -->
**We will continue to update this model zoo including all scales of ViTs and highly-efficient ConvNets with the MiCo pretraining paradigm**
<summary> Current Checkpoints </summary>
<br>
<div>
| Model | Pretraining | Scale | Modality | #Param | Google Drive | Hugging Face
| :------------: | :----------: | :----------------------: | :----: | :---------------------------------------------------------------------------------------------------: |:----: | :----: |
| MiCo | 300k steps | ViT-g | Omni-modal | 1.3B | [ckpt](https://drive.google.com/drive/folders/1AIQjV1KU8K4OXiO-4gFirxkoxt3twWIq?usp=sharing) | [ckpt](https://huggingface.co/Yiyuan/MiCo-ViT-g-14-omnimodal-300k-b64K)
</div>
### ๐ Omni-Modal Dataset Collection
We provdie a detailed [doc](data/README.md) for preparing the omni-modal dataset step-by-step
### โก Quick Start
1. Download MiCo weights
```bash
pip install gdown
gdown 1AIQjV1KU8K4OXiO-4gFirxkoxt3twWIq --folder
python inference_demo.py
```
# Citation
If the code and paper help your research, please kindly cite:
```
@article{zhang2024explore,
title={Explore the Limits of Omni-modal Pretraining at Scale},
author={Zhang, Yiyuan and Li, Handong and Liu, Jing and Yue, Xiangyu},
journal={arXiv preprint arXiv:2406.xxxxx},
year={2024}
}
```
# License
This project is released under the [Apache 2.0 license](LICENSE).
# Acknowledgement
We appreciate [Dr. Xiaohan Ding](https://dingxiaohan.xyz/) for the valuable discussion and suggestions.This code is developed based [Meta-Transformer](https://github.com/invictus717/MetaTransformer), [VAST](https://github.com/TXH-mercury/VAST), [DPT](https://github.com/EPFL-VILAB/omnidata), and [GeoWizard](https://github.com/fuxiao0719/GeoWizard).
# Paper
arxiv.org/abs/2406.09412 |