librarian-bot's picture
Librarian Bot: Add base_model information to model
fc2addf
|
raw
history blame
2.28 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - sem_eval_2018_task_1
metrics:
  - f1
  - accuracy
base_model: aubmindlab/bert-large-arabertv02-twitter
model-index:
  - name: arabert-emotions-classification
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: sem_eval_2018_task_1
          type: sem_eval_2018_task_1
          config: subtask5.arabic
          split: validation
          args: subtask5.arabic
        metrics:
          - type: f1
            value: 0.7189952904238618
            name: F1
          - type: accuracy
            value: 0.2717948717948718
            name: Accuracy

arabert-emotions-classification

This model is a fine-tuned version of aubmindlab/bert-large-arabertv02-twitter on the sem_eval_2018_task_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2636
  • F1: 0.7190
  • Roc Auc: 0.8061
  • Accuracy: 0.2718

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 20
  • eval_batch_size: 20
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 114 0.3055 0.6653 0.7674 0.2462
No log 2.0 228 0.2776 0.6987 0.7887 0.2701
No log 3.0 342 0.2680 0.7062 0.7943 0.2769
No log 4.0 456 0.2644 0.7140 0.8032 0.2718
0.2701 5.0 570 0.2636 0.7190 0.8061 0.2718

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3