Uploaded model

  • Developed by: Yuji20241216
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

このコードはunslothで学習したLoRAのアダプタを用いてELYZA-tasks-100-TVの出力を得るためのコードです。 Hugging Faceにアダプタをアップロードしていることが前提となります。 ※本コードはOmnicampusでの動作を想定しています

以下のコードを実行することで出力を得ることができます。

!pip install -U bitsandbytes !pip install -U transformers !pip install -U accelerate !pip install -U datasets !pip install -U peft

from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) from peft import PeftModel import torch from tqdm import tqdm import json

Hugging Faceで取得したTokenをこちらに貼って下さい。

HF_TOKEN = "Hugging Face Token"

model_id = "models/models--llm-jp--llm-jp-3-13b/snapshots/cd3823f4c1fcbb0ad2e2af46036ab1b0ca13192a" adapter_id = "Yuji20241216/llm-jp-3-13b-it_lora"

QLoRA config

bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, )

Load model

model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto", token = HF_TOKEN )

Load tokenizer

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)

元のモデルにLoRAのアダプタを統合。

model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)

データセットの読み込み。

omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。

datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = ""

llmjp

results = [] for data in tqdm(datasets):

input = data["input"]

prompt = f"""### 指示 {input}

回答

"""

tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) attention_mask = torch.ones_like(tokenized_input) with torch.no_grad(): outputs = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=100, do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

results.append({"task_id": data["task_id"], "input": input, "output": output})

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Yuji20241216/llm-jp-3-13b-it_lora

Finetuned
(1136)
this model