metadata
language:
- en
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- argilla/CapybaraHermes-2.5-Mistral-7B
- argilla/distilabeled-OpenHermes-2.5-Mistral-7B
base_model:
- argilla/CapybaraHermes-2.5-Mistral-7B
- argilla/distilabeled-OpenHermes-2.5-Mistral-7B
model-index:
- name: KangalKhan-Ruby-7B-Fixed
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 67.24
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.22
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.21
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 56.49
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.98
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.94
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed
name: Open LLM Leaderboard
KangalKhan-Ruby-7B
I suggest using ChatML (Use whatever system prompt you like, this is just an example!):
<|im_start|>system
You are a friendly assistant.<|im_end|>
<|im_start|>user
Hello, what are you?<|im_end|>
<|im_start|>assistant
I am an AI language model designed to assist users with information and answer their questions. How can I help you today?<|im_end|>
Q4_K_S GGUF:
https://huggingface.co/Yuma42/KangalKhan-Ruby-7B-Fixed-GGUF
More GGUF variants by mradermacher:
https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF
KangalKhan-Ruby-7B is a merge of the following models using LazyMergekit:
🧩 Configuration
slices:
- sources:
- model: argilla/CapybaraHermes-2.5-Mistral-7B
layer_range: [0, 32]
- model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B
layer_range: [0, 32]
merge_method: slerp
base_model: argilla/CapybaraHermes-2.5-Mistral-7B
parameters:
t:
- filter: self_attn
value: [1, 0.5, 0.7, 0.3, 0]
- filter: mlp
value: [0, 0.5, 0.3, 0.7, 1]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Yuma42/KangalKhan-Ruby-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 68.68 |
AI2 Reasoning Challenge (25-Shot) | 67.24 |
HellaSwag (10-Shot) | 85.22 |
MMLU (5-Shot) | 63.21 |
TruthfulQA (0-shot) | 56.49 |
Winogrande (5-shot) | 77.98 |
GSM8k (5-shot) | 61.94 |