aaa12963337's picture
End of training
5e96fba
metadata
license: apache-2.0
base_model: WinKawaks/vit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: msi-vit-small-1218-2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6164383561643836
          - name: F1
            type: f1
            value: 0.3276157804459692
          - name: Precision
            type: precision
            value: 0.6840624200562804
          - name: Recall
            type: recall
            value: 0.2153846153846154

msi-vit-small-1218-2

This model is a fine-tuned version of WinKawaks/vit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3372
  • Accuracy: 0.6164
  • F1: 0.3276
  • Precision: 0.6841
  • Recall: 0.2154

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.4367 1.0 1008 0.6603 0.6572 0.5313 0.6530 0.4478
0.2161 2.0 2016 0.8021 0.6329 0.4989 0.6118 0.4211
0.169 3.0 3024 1.4062 0.6010 0.2653 0.6592 0.1661
0.1543 4.0 4032 1.1498 0.6259 0.3670 0.6903 0.2499
0.1534 5.0 5040 1.5067 0.6208 0.3519 0.6808 0.2373
0.1596 6.0 6048 0.8837 0.6504 0.6505 0.5744 0.7498
0.1504 7.0 7056 1.0030 0.6302 0.4192 0.6580 0.3075
0.1795 8.0 8064 1.3908 0.5953 0.2950 0.6041 0.1952
0.1636 9.0 9072 1.1040 0.6290 0.4619 0.6230 0.3671
0.1629 10.0 10080 1.3372 0.6164 0.3276 0.6841 0.2154

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.15.0
  • Tokenizers 0.15.0