File size: 61,885 Bytes
4eccf7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
---

language:
- de
- en
- es
- fr
- it
- nl
- pl
- pt
- ru
- zh
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:10K<n<100K
- loss:MatryoshkaLoss
- loss:CosineSimilarityLoss
base_model: aari1995/gbert-large-2-cls-nlisim
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: Ein Mann spricht.
  sentences:
  - Ein Mann spricht in ein Mikrofon.
  - Der Mann spielt auf den Tastaturen.
  - Zwei Mädchen gehen im Ozean spazieren.
- source_sentence: Eine Flagge weht.
  sentences:
  - Die Flagge bewegte sich in der Luft.
  - Ein Hund fährt auf einem Skateboard.
  - Zwei Frauen sitzen in einem Cafe.
- source_sentence: Ein Mann übt Boxen
  sentences:
  - Ein Affe praktiziert Kampfsportarten.
  - Eine Person faltet ein Blatt Papier.
  - Eine Frau geht mit ihrem Hund spazieren.
- source_sentence: Das Tor ist gelb.
  sentences:
  - Das Tor ist blau.
  - Die Frau hält die Hände des Mannes.
  - NATO-Soldat bei afghanischem Angriff getötet
- source_sentence: Zwei Frauen laufen.
  sentences:
  - Frauen laufen.
  - Die Frau prüft die Augen des Mannes.
  - Ein Mann ist auf einem Dach
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on aari1995/gbert-large-2-cls-nlisim
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 1024
      type: sts-dev-1024
    metrics:
    - type: pearson_cosine
      value: 0.8417806877288009
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8452891310343582
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8418749526406495
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8450348906331776
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8422615095001257
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8453390990427703
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8416625079549063
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8450616171323844
      name: Spearman Dot
    - type: pearson_max
      value: 0.8422615095001257
      name: Pearson Max
    - type: spearman_max
      value: 0.8453390990427703
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 768
      type: sts-dev-768
    metrics:
    - type: pearson_cosine
      value: 0.8418107096367227
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8453863409322975
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8418527770289471
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8448328869253576
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8422791953749277
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8451547857394669
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8417682812591724
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8446927200809794
      name: Spearman Dot
    - type: pearson_max
      value: 0.8422791953749277
      name: Pearson Max
    - type: spearman_max
      value: 0.8453863409322975
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 512
      type: sts-dev-512
    metrics:
    - type: pearson_cosine
      value: 0.8394808864309438
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8437551103291275
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8420246416513741
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8447335398769396
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8422722079216611
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8448909261141044
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8358204287638725
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8380004733308642
      name: Spearman Dot
    - type: pearson_max
      value: 0.8422722079216611
      name: Pearson Max
    - type: spearman_max
      value: 0.8448909261141044
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 256
      type: sts-dev-256
    metrics:
    - type: pearson_cosine
      value: 0.833879413726309
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8392439788855341
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8379618268497928
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.839860826315925
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.838931461279174
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8404811150299943
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8230557648139373
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8242532718299653
      name: Spearman Dot
    - type: pearson_max
      value: 0.838931461279174
      name: Pearson Max
    - type: spearman_max
      value: 0.8404811150299943
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 128
      type: sts-dev-128
    metrics:
    - type: pearson_cosine
      value: 0.8253967606033702
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8335750690073012
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8341588626988476
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8343994326050966
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8355263623880292
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8358857095028451
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8035163216908426
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8050271037746011
      name: Spearman Dot
    - type: pearson_max
      value: 0.8355263623880292
      name: Pearson Max
    - type: spearman_max
      value: 0.8358857095028451
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 64
      type: sts-dev-64
    metrics:
    - type: pearson_cosine
      value: 0.8150661334039712
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8265558538619309
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8241988539394505
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8238763145175863
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8274925218859535
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8270778062044848
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7773847317840161
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7790338242936304
      name: Spearman Dot
    - type: pearson_max
      value: 0.8274925218859535
      name: Pearson Max
    - type: spearman_max
      value: 0.8270778062044848
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 1024
      type: sts-test-1024
    metrics:
    - type: pearson_cosine
      value: 0.8130772714952826
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8188901246173036
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8208715312691268
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8195095089412118
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.820344720619671
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8189263018901494
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8127924456922464
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8185815083131535
      name: Spearman Dot
    - type: pearson_max
      value: 0.8208715312691268
      name: Pearson Max
    - type: spearman_max
      value: 0.8195095089412118
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 768
      type: sts-test-768
    metrics:
    - type: pearson_cosine
      value: 0.8121757739236393
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8182913347635533
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.820604714791802
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8190481839997107
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8197462057663948
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8183157116237637
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8106698462984598
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8148932181769889
      name: Spearman Dot
    - type: pearson_max
      value: 0.820604714791802
      name: Pearson Max
    - type: spearman_max
      value: 0.8190481839997107
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 512
      type: sts-test-512
    metrics:
    - type: pearson_cosine
      value: 0.8096452235754106
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.816264314810491
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8180021560255247
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8165486306356095
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8173829404008947
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8158592878546184
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.8059176831913651
      name: Pearson Dot
    - type: spearman_dot
      value: 0.8088972406630007
      name: Spearman Dot
    - type: pearson_max
      value: 0.8180021560255247
      name: Pearson Max
    - type: spearman_max
      value: 0.8165486306356095
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 256
      type: sts-test-256
    metrics:
    - type: pearson_cosine
      value: 0.8070921035712145
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8150266310280979
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.818409081545237
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8167245415653657
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8176811220335696
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8158894222194816
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.795483328805793
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7956062163122977
      name: Spearman Dot
    - type: pearson_max
      value: 0.818409081545237
      name: Pearson Max
    - type: spearman_max
      value: 0.8167245415653657
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 128
      type: sts-test-128
    metrics:
    - type: pearson_cosine
      value: 0.7974039089035316
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8093067652791092
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8125792968401813
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8121486514324944
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8119102513178551
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.811152531425261
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7739555890021923
      name: Pearson Dot
    - type: spearman_dot
      value: 0.770072655568691
      name: Spearman Dot
    - type: pearson_max
      value: 0.8125792968401813
      name: Pearson Max
    - type: spearman_max
      value: 0.8121486514324944
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 64
      type: sts-test-64
    metrics:
    - type: pearson_cosine
      value: 0.7873069617689994
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8024994399645912
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8048161563115213
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8031972835914969
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8060416893207731
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8041515980374414
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.747911221220991
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7386011869481828
      name: Spearman Dot
    - type: pearson_max
      value: 0.8060416893207731
      name: Pearson Max
    - type: spearman_max
      value: 0.8041515980374414
      name: Spearman Max
---


# SentenceTransformer based on aari1995/gbert-large-2-cls-nlisim

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [aari1995/gbert-large-2-cls-nlisim](https://huggingface.co/aari1995/gbert-large-2-cls-nlisim) on the [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [aari1995/gbert-large-2-cls-nlisim](https://huggingface.co/aari1995/gbert-large-2-cls-nlisim) <!-- at revision fb515aefe7a575165dcaa62db3f77a09642ebe64 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt)
- **Languages:** de, en, es, fr, it, nl, pl, pt, ru, zh
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: JinaBertModel 

  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("aari1995/gbert-large-2-cls-pawsx-nli-sts")

# Run inference

sentences = [

    'Zwei Frauen laufen.',

    'Frauen laufen.',

    'Die Frau prüft die Augen des Mannes.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 1024]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev-1024`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8418     |

| **spearman_cosine** | **0.8453** |

| pearson_manhattan   | 0.8419     |
| spearman_manhattan  | 0.845      |

| pearson_euclidean   | 0.8423     |
| spearman_euclidean  | 0.8453     |

| pearson_dot         | 0.8417     |
| spearman_dot        | 0.8451     |

| pearson_max         | 0.8423     |
| spearman_max        | 0.8453     |



#### Semantic Similarity

* Dataset: `sts-dev-768`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| pearson_cosine      | 0.8418     |
| **spearman_cosine** | **0.8454** |

| pearson_manhattan   | 0.8419     |

| spearman_manhattan  | 0.8448     |

| pearson_euclidean   | 0.8423     |

| spearman_euclidean  | 0.8452     |

| pearson_dot         | 0.8418     |

| spearman_dot        | 0.8447     |

| pearson_max         | 0.8423     |

| spearman_max        | 0.8454     |



#### Semantic Similarity

* Dataset: `sts-dev-512`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| pearson_cosine      | 0.8395     |

| **spearman_cosine** | **0.8438** |

| pearson_manhattan   | 0.842      |
| spearman_manhattan  | 0.8447     |

| pearson_euclidean   | 0.8423     |
| spearman_euclidean  | 0.8449     |

| pearson_dot         | 0.8358     |
| spearman_dot        | 0.838      |

| pearson_max         | 0.8423     |
| spearman_max        | 0.8449     |



#### Semantic Similarity

* Dataset: `sts-dev-256`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| pearson_cosine      | 0.8339     |
| **spearman_cosine** | **0.8392** |

| pearson_manhattan   | 0.838      |

| spearman_manhattan  | 0.8399     |

| pearson_euclidean   | 0.8389     |

| spearman_euclidean  | 0.8405     |

| pearson_dot         | 0.8231     |

| spearman_dot        | 0.8243     |

| pearson_max         | 0.8389     |

| spearman_max        | 0.8405     |



#### Semantic Similarity

* Dataset: `sts-dev-128`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| pearson_cosine      | 0.8254     |

| **spearman_cosine** | **0.8336** |

| pearson_manhattan   | 0.8342     |
| spearman_manhattan  | 0.8344     |

| pearson_euclidean   | 0.8355     |
| spearman_euclidean  | 0.8359     |

| pearson_dot         | 0.8035     |
| spearman_dot        | 0.805      |

| pearson_max         | 0.8355     |
| spearman_max        | 0.8359     |



#### Semantic Similarity

* Dataset: `sts-dev-64`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| pearson_cosine      | 0.8151     |
| **spearman_cosine** | **0.8266** |

| pearson_manhattan   | 0.8242     |

| spearman_manhattan  | 0.8239     |

| pearson_euclidean   | 0.8275     |

| spearman_euclidean  | 0.8271     |

| pearson_dot         | 0.7774     |

| spearman_dot        | 0.779      |

| pearson_max         | 0.8275     |

| spearman_max        | 0.8271     |



#### Semantic Similarity

* Dataset: `sts-test-1024`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| pearson_cosine      | 0.8131     |

| **spearman_cosine** | **0.8189** |

| pearson_manhattan   | 0.8209     |
| spearman_manhattan  | 0.8195     |

| pearson_euclidean   | 0.8203     |
| spearman_euclidean  | 0.8189     |

| pearson_dot         | 0.8128     |
| spearman_dot        | 0.8186     |

| pearson_max         | 0.8209     |
| spearman_max        | 0.8195     |



#### Semantic Similarity

* Dataset: `sts-test-768`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| pearson_cosine      | 0.8122     |
| **spearman_cosine** | **0.8183** |

| pearson_manhattan   | 0.8206     |

| spearman_manhattan  | 0.819      |

| pearson_euclidean   | 0.8197     |

| spearman_euclidean  | 0.8183     |

| pearson_dot         | 0.8107     |

| spearman_dot        | 0.8149     |

| pearson_max         | 0.8206     |

| spearman_max        | 0.819      |



#### Semantic Similarity

* Dataset: `sts-test-512`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| pearson_cosine      | 0.8096     |

| **spearman_cosine** | **0.8163** |

| pearson_manhattan   | 0.818      |
| spearman_manhattan  | 0.8165     |

| pearson_euclidean   | 0.8174     |
| spearman_euclidean  | 0.8159     |

| pearson_dot         | 0.8059     |
| spearman_dot        | 0.8089     |

| pearson_max         | 0.818      |
| spearman_max        | 0.8165     |



#### Semantic Similarity

* Dataset: `sts-test-256`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric              | Value     |

|:--------------------|:----------|

| pearson_cosine      | 0.8071    |
| **spearman_cosine** | **0.815** |

| pearson_manhattan   | 0.8184    |

| spearman_manhattan  | 0.8167    |

| pearson_euclidean   | 0.8177    |

| spearman_euclidean  | 0.8159    |

| pearson_dot         | 0.7955    |

| spearman_dot        | 0.7956    |

| pearson_max         | 0.8184    |

| spearman_max        | 0.8167    |



#### Semantic Similarity

* Dataset: `sts-test-128`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| pearson_cosine      | 0.7974     |

| **spearman_cosine** | **0.8093** |

| pearson_manhattan   | 0.8126     |
| spearman_manhattan  | 0.8121     |

| pearson_euclidean   | 0.8119     |
| spearman_euclidean  | 0.8112     |

| pearson_dot         | 0.774      |
| spearman_dot        | 0.7701     |

| pearson_max         | 0.8126     |
| spearman_max        | 0.8121     |



#### Semantic Similarity

* Dataset: `sts-test-64`

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)



| Metric              | Value      |

|:--------------------|:-----------|

| pearson_cosine      | 0.7873     |
| **spearman_cosine** | **0.8025** |

| pearson_manhattan   | 0.8048     |

| spearman_manhattan  | 0.8032     |

| pearson_euclidean   | 0.806      |

| spearman_euclidean  | 0.8042     |

| pearson_dot         | 0.7479     |

| spearman_dot        | 0.7386     |

| pearson_max         | 0.806      |

| spearman_max        | 0.8042     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### PhilipMay/stsb_multi_mt



* Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)

* Size: 22,996 training samples

* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>

* Approximate statistics based on the first 1000 samples:

  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |

  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|

  | type    | string                                                                            | string                                                                            | float                                                          |

  | details | <ul><li>min: 6 tokens</li><li>mean: 18.13 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.25 tokens</li><li>max: 90 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |

* Samples:

  | sentence1                                                                | sentence2                                                                        | score                           |

  |:-------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------|

  | <code>schütze wegen mordes an schwarzem us-jugendlichen angeklagt</code> | <code>gedanken zu den rassenbeziehungen unter einem schwarzen präsidenten</code> | <code>0.1599999964237213</code> |

  | <code>fußballspieler kicken einen fußball in das tor.</code>             | <code>Ein Fußballspieler schießt ein Tor.</code>                                 | <code>0.7599999904632568</code> |

  | <code>obama lockert abschiebungsregeln für junge einwanderer</code>      | <code>usa lockert abschiebebestimmungen für jugendliche: napolitano</code>       | <code>0.800000011920929</code>  |

* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:

  ```json

  {

      "loss": "CosineSimilarityLoss",

      "matryoshka_dims": [

          1024,

          768,

          512,

          256,

          128,

          64

      ],

      "matryoshka_weights": [

          1,

          1,

          1,

          1,

          1,

          1

      ],

      "n_dims_per_step": -1

  }

  ```



### Evaluation Dataset



#### PhilipMay/stsb_multi_mt



* Dataset: [PhilipMay/stsb_multi_mt](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt) at [3acaa3d](https://huggingface.co/datasets/PhilipMay/stsb_multi_mt/tree/3acaa3dd8c91649e0b8e627ffad891f059e47c8c)

* Size: 1,500 evaluation samples

* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>

* Approximate statistics based on the first 1000 samples:

  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |

  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|

  | type    | string                                                                            | string                                                                            | float                                                          |

  | details | <ul><li>min: 5 tokens</li><li>mean: 16.54 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.53 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |

* Samples:

  | sentence1                                                    | sentence2                                                  | score                          |

  |:-------------------------------------------------------------|:-----------------------------------------------------------|:-------------------------------|

  | <code>Ein Mann mit einem Schutzhelm tanzt.</code>            | <code>Ein Mann mit einem Schutzhelm tanzt.</code>          | <code>1.0</code>               |

  | <code>Ein kleines Kind reitet auf einem Pferd.</code>        | <code>Ein Kind reitet auf einem Pferd.</code>              | <code>0.949999988079071</code> |

  | <code>Ein Mann verfüttert eine Maus an eine Schlange.</code> | <code>Der Mann füttert die Schlange mit einer Maus.</code> | <code>1.0</code>               |

* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:

  ```json

  {

      "loss": "CosineSimilarityLoss",

      "matryoshka_dims": [

          1024,

          768,

          512,

          256,

          128,

          64

      ],

      "matryoshka_weights": [

          1,

          1,

          1,

          1,

          1,

          1

      ],

      "n_dims_per_step": -1

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 4

- `per_device_eval_batch_size`: 16

- `learning_rate`: 5e-06

- `num_train_epochs`: 1

- `warmup_ratio`: 0.1

- `bf16`: True



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 4

- `per_device_eval_batch_size`: 16

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `learning_rate`: 5e-06

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 1

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.1

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: True

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `eval_on_start`: False

- `batch_sampler`: batch_sampler

- `multi_dataset_batch_sampler`: proportional



</details>



### Training Logs

| Epoch  | Step | Training Loss | loss   | sts-dev-1024_spearman_cosine | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-1024_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |

|:------:|:----:|:-------------:|:------:|:----------------------------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:-----------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|

| 0.0174 | 100  | 0.2958        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.0348 | 200  | 0.2914        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.0522 | 300  | 0.2691        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.0696 | 400  | 0.253         | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.0870 | 500  | 0.2458        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.1044 | 600  | 0.2594        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.1218 | 700  | 0.2339        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.1392 | 800  | 0.2245        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.1565 | 900  | 0.2122        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.1739 | 1000 | 0.2369        | 0.2394 | 0.8402                       | 0.8277                      | 0.8352                      | 0.8393                      | 0.8164                     | 0.8404                      | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.1913 | 1100 | 0.2308        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.2087 | 1200 | 0.2292        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.2261 | 1300 | 0.2232        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.2435 | 1400 | 0.2001        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.2609 | 1500 | 0.2139        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.2783 | 1600 | 0.1906        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.2957 | 1700 | 0.1895        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.3131 | 1800 | 0.2011        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.3305 | 1900 | 0.1723        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.3479 | 2000 | 0.1886        | 0.2340 | 0.8448                       | 0.8321                      | 0.8385                      | 0.8435                      | 0.8233                     | 0.8449                      | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.3653 | 2100 | 0.1719        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.3827 | 2200 | 0.1879        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.4001 | 2300 | 0.187         | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.4175 | 2400 | 0.1487        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.4349 | 2500 | 0.1752        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.4523 | 2600 | 0.1475        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.4696 | 2700 | 0.1695        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.4870 | 2800 | 0.1615        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.5044 | 2900 | 0.1558        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.5218 | 3000 | 0.1713        | 0.2357 | 0.8457                       | 0.8344                      | 0.8406                      | 0.8447                      | 0.8266                     | 0.8461                      | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.5392 | 3100 | 0.1556        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.5566 | 3200 | 0.1743        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.5740 | 3300 | 0.1426        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.5914 | 3400 | 0.1519        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.6088 | 3500 | 0.1763        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.6262 | 3600 | 0.1456        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.6436 | 3700 | 0.1649        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.6610 | 3800 | 0.1427        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.6784 | 3900 | 0.1284        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.6958 | 4000 | 0.1533        | 0.2344 | 0.8417                       | 0.8291                      | 0.8357                      | 0.8402                      | 0.8225                     | 0.8421                      | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.7132 | 4100 | 0.1397        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.7306 | 4200 | 0.1505        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.7480 | 4300 | 0.1355        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.7654 | 4400 | 0.1275        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.7827 | 4500 | 0.1599        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.8001 | 4600 | 0.1493        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.8175 | 4700 | 0.1497        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.8349 | 4800 | 0.1492        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.8523 | 4900 | 0.1378        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.8697 | 5000 | 0.1391        | 0.2362 | 0.8453                       | 0.8336                      | 0.8392                      | 0.8438                      | 0.8266                     | 0.8454                      | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.8871 | 5100 | 0.1622        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.9045 | 5200 | 0.1456        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.9219 | 5300 | 0.1367        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.9393 | 5400 | 0.1243        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.9567 | 5500 | 0.1389        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.9741 | 5600 | 0.1338        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 0.9915 | 5700 | 0.1146        | -      | -                            | -                           | -                           | -                           | -                          | -                           | -                             | -                            | -                            | -                            | -                           | -                            |

| 1.0    | 5749 | -             | -      | -                            | -                           | -                           | -                           | -                          | -                           | 0.8189                        | 0.8093                       | 0.8150                       | 0.8163                       | 0.8025                      | 0.8183                       |





### Framework Versions

- Python: 3.9.16

- Sentence Transformers: 3.0.0

- Transformers: 4.42.0.dev0

- PyTorch: 2.2.2+cu118

- Accelerate: 0.31.0

- Datasets: 2.19.1

- Tokenizers: 0.19.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MatryoshkaLoss

```bibtex

@misc{kusupati2024matryoshka,

    title={Matryoshka Representation Learning}, 

    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},

    year={2024},

    eprint={2205.13147},

    archivePrefix={arXiv},

    primaryClass={cs.LG}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->