Phi-2-super (SFT + cDPO)
Base Model: microsoft/phi-2
How to run inference:
import transformers
import torch
if __name__ == "__main__":
model_name = "abacaj/phi-2-super"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = (
transformers.AutoModelForCausalLM.from_pretrained(
model_name,
)
.to("cuda:0")
.eval()
)
messages = [
{"role": "user", "content": "Hello, who are you?"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
input_ids_cutoff = inputs.size(dim=1)
with torch.no_grad():
generated_ids = model.generate(
input_ids=inputs,
use_cache=True,
max_new_tokens=512,
temperature=0.2,
top_p=0.95,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
completion = tokenizer.decode(
generated_ids[0][input_ids_cutoff:],
skip_special_tokens=True,
)
print(completion)
Chat template
The model uses the same chat template as found in Mistral instruct models:
text = "<|endoftext|>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!<|endoftext|> "
"[INST] Do you have mayonnaise recipes? [/INST]"
You don't need to do it manually if you use the HF transformers tokenizer:
messages = [
{"role": "user", "content": "Hello, who are you?"},
{"role": "assistant": "content": "I am ..."}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
MT-bench / heval
- Downloads last month
- 344
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for abacaj/phi-2-super
Spaces using abacaj/phi-2-super 3
Evaluation results
- prompt_level_loose_acc on Instruction Following EvalLightEval0.272