2d_psn_800
This model is a fine-tuned version of bert-base-uncased on the ComNum dataset. This model used 800 samples as training, 200 as validation, and 1200 as test on three epochs. It achieves the following results on the evaluation set:
- Loss: 0.3548
- Accuracy: 0.765
This model achieves the following results on the test set:
- Loss: 0.3519
- Accuracy: 0.7494
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 100 | 0.3581 | 0.765 |
No log | 2.0 | 200 | 0.3559 | 0.765 |
No log | 3.0 | 300 | 0.3548 | 0.765 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for abbassix/2d_psn_800
Base model
google-bert/bert-base-uncased