emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1554
  • Accuracy: 0.5938

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.2477 1.0 10 1.3618 0.5625
1.2002 2.0 20 1.3367 0.5625
1.111 3.0 30 1.3178 0.5312
1.0286 4.0 40 1.2215 0.5625
0.9376 5.0 50 1.2117 0.5437
0.8948 6.0 60 1.2304 0.5625
0.8234 7.0 70 1.1634 0.5563
0.8069 8.0 80 1.2422 0.5563
0.7146 9.0 90 1.2053 0.5563
0.709 10.0 100 1.1887 0.575
0.6404 11.0 110 1.2208 0.5563
0.6301 12.0 120 1.2319 0.5687
0.6107 13.0 130 1.1684 0.6
0.5825 14.0 140 1.1837 0.5813
0.5454 15.0 150 1.1818 0.5687
0.5517 16.0 160 1.1974 0.55
0.4989 17.0 170 1.1304 0.6
0.4875 18.0 180 1.2277 0.5375
0.4881 19.0 190 1.1363 0.5875
0.4951 20.0 200 1.1540 0.6062

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
192
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for abelkrw/emotion_classification

Finetuned
(1821)
this model

Evaluation results