End of training
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/vit-base-patch16-224-in21k
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: emotion_classification
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.59375
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# emotion_classification
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 1.1554
|
36 |
+
- Accuracy: 0.5938
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 16
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 64
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 20
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
70 |
+
| 1.2477 | 1.0 | 10 | 1.3618 | 0.5625 |
|
71 |
+
| 1.2002 | 2.0 | 20 | 1.3367 | 0.5625 |
|
72 |
+
| 1.111 | 3.0 | 30 | 1.3178 | 0.5312 |
|
73 |
+
| 1.0286 | 4.0 | 40 | 1.2215 | 0.5625 |
|
74 |
+
| 0.9376 | 5.0 | 50 | 1.2117 | 0.5437 |
|
75 |
+
| 0.8948 | 6.0 | 60 | 1.2304 | 0.5625 |
|
76 |
+
| 0.8234 | 7.0 | 70 | 1.1634 | 0.5563 |
|
77 |
+
| 0.8069 | 8.0 | 80 | 1.2422 | 0.5563 |
|
78 |
+
| 0.7146 | 9.0 | 90 | 1.2053 | 0.5563 |
|
79 |
+
| 0.709 | 10.0 | 100 | 1.1887 | 0.575 |
|
80 |
+
| 0.6404 | 11.0 | 110 | 1.2208 | 0.5563 |
|
81 |
+
| 0.6301 | 12.0 | 120 | 1.2319 | 0.5687 |
|
82 |
+
| 0.6107 | 13.0 | 130 | 1.1684 | 0.6 |
|
83 |
+
| 0.5825 | 14.0 | 140 | 1.1837 | 0.5813 |
|
84 |
+
| 0.5454 | 15.0 | 150 | 1.1818 | 0.5687 |
|
85 |
+
| 0.5517 | 16.0 | 160 | 1.1974 | 0.55 |
|
86 |
+
| 0.4989 | 17.0 | 170 | 1.1304 | 0.6 |
|
87 |
+
| 0.4875 | 18.0 | 180 | 1.2277 | 0.5375 |
|
88 |
+
| 0.4881 | 19.0 | 190 | 1.1363 | 0.5875 |
|
89 |
+
| 0.4951 | 20.0 | 200 | 1.1540 | 0.6062 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.33.2
|
95 |
+
- Pytorch 2.0.1+cu118
|
96 |
+
- Datasets 2.14.5
|
97 |
+
- Tokenizers 0.13.3
|