TinyBERT-finetuned-NER

This model is a fine-tuned version of huawei-noah/TinyBERT_General_4L_312D on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1232
  • Precision: 0.8465
  • Recall: 0.8707
  • F1: 0.8584
  • Accuracy: 0.9671

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.5173 1.0 878 0.2116 0.7429 0.7756 0.7589 0.9493
0.196 2.0 1756 0.1528 0.8262 0.8383 0.8323 0.9620
0.1444 3.0 2634 0.1355 0.8447 0.8606 0.8526 0.9652
0.116 4.0 3512 0.1255 0.8452 0.8660 0.8555 0.9663
0.1116 5.0 4390 0.1232 0.8465 0.8707 0.8584 0.9671

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
132
Safetensors
Model size
14.3M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for adel-cybral/TinyBERT-finetuned-NER

Finetuned
(18)
this model

Dataset used to train adel-cybral/TinyBERT-finetuned-NER

Evaluation results